Related Benchmarks
Related Access Points
Access Points
Related Resources
Formative Assessments
Lesson Plans
Original Student Tutorials
Perspectives Video: Professional/Enthusiast
Perspectives Video: Teaching Idea
Problem-Solving Tasks
Teaching Idea
Video/Audio/Animation
Student Resources
Original Student Tutorials
Learn how similar right triangles can show how the slope is the same between any two distinct points on a non-vertical line as you help Hailey build stairs to her tree house in this interactive tutorial.
Type: Original Student Tutorial
Learn to construct a function to model a linear relationship between two quantities and determine the slope and y-intercept given two points that represent the function with this interactive tutorial.
Type: Original Student Tutorial
See how sweet it can be to determine the slope of linear functions and compare them in this interactive tutorial. Determine and compare the slopes or the rates of change by using verbal descriptions, tables of values, equations and graphical forms.
Type: Original Student Tutorial
Learn what slope is in mathematics and how to calculate it on a graph and with the slope formula in this interactive tutorial.
Type: Original Student Tutorial
Learn how to use the equation of a linear trend line to interpolate and extrapolate bivariate data plotted in a scatterplot. You will see the usefulness of trend lines and how they are used in this interactive tutorial.
This is part 6 in 6-part series. Click below to open the other tutorials in the series.
- Scatterplots Part 1: Graphing
- Scatterplots Part 2: Patterns, Associations and Correlations
- Scatterplots Part 3: Trend Lines
- Scatterplots Part 4: Equation of the Trend Line
- Scatterplots Part 5: Interpreting the Equation of the Trend Line
Type: Original Student Tutorial
Explore how to interpret the slope and y-intercept of a linear trend line when bivariate data is graphed on a scatterplot in this interactive tutorial.
This is part 5 in 6-part series. Click below to open the other tutorials in the series.
- Scatterplots Part 1: Graphing
- Scatterplots Part 2: Patterns, Associations and Correlations
- Scatterplots Part 3: Trend Lines
- Scatterplots Part 4: Equation of the Trend Line
- Scatterplots Part 6: Using Linear Models
Type: Original Student Tutorial
Learn how to write the equation of a linear trend line when fitted to bivariate data in a scatterplot in this interactive tutorial.
This is part 4 in 6-part series. Click below to open the other tutorials in the series.
- Scatterplots Part 1: Graphing
- Scatterplots Part 2: Patterns, Associations and Correlations
- Scatterplots Part 3: Trend Lines
- Scatterplots Part 5: Interpreting the Equation of the Trend Line
- Scatterplots Part 6: Using Linear Models
Type: Original Student Tutorial
Learn to construct linear functions from tables that contain sets of data that relate to each other in special ways as you complete this interactive tutorial.
Type: Original Student Tutorial
Problem-Solving Tasks
In this task, students are asked to determine the unit price of a product under two different circumstances. They are also asked to generalize the cost of producing x items in each case.
Type: Problem-Solving Task
This task asks the student to graph and compare two proportional relationships and interpret the unit rate as the slope of the graph. Students are also asked to write an equation and graph each scenario.
Type: Problem-Solving Task
Students will answer questions about unit price of coffee, make a graph of the information, and explain the meaning of constant of proportionality/slope in the given context.
Type: Problem-Solving Task
This task lets students explore the differences between linear and non-linear functions. By contrasting the two, it reinforces properties of linear functions.
Type: Problem-Solving Task
The primary purpose of this task is to elicit common misconceptions that arise when students try to model situations with linear functions. This task, being multiple choice, could also serve as a quick assessment to gauge a class' understanding of modeling with linear functions.
Type: Problem-Solving Task
This task would be especially well-suited for instructional purposes. Students will benefit from a class discussion about the slope, y-intercept, x-intercept, and implications of the restricted domain for interpreting more precisely what the equation is modeling.
Type: Problem-Solving Task
The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.
Type: Problem-Solving Task
In this resource, real-world bivariate data is displayed in a scatter plot. The equation of the linear function which models the relationship between the two variables is provided, and it is graphed on the scatter plot. Students are asked to use the model to interpret the data and to make predictions.
Type: Problem-Solving Task
This task provides the opportunity for students to reason about graphs, slopes, and rates without having a scale on the axes or an equation to represent the graphs. Students who prefer to work with specific numbers can write in scales on the axes to help them get started.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
Students are asked to create and graph linear equations to compare the savings of two individuals. The purpose of the table in (a) is to help students complete (b) by noticing regularity in the repeated reasoning required to complete the table.
Type: Problem-Solving Task
This task asks students to reason about the relative costs per pound of two fruits without actually knowing what the costs are. Students who find this difficult may add a scale to the graph and reason about the meanings of the ordered pairs. Comparing the two approaches in a class discussion can be a profitable way to help students make sense of slope.
Type: Problem-Solving Task
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
This problem-solving task asks students to find a linear function that models something in the real world. After finding the equation of the linear relationship between the depth of the water and the distance across the channel, students have to verbalize the meaning of the slope and intercept of the line in the context of this situation. Commentary and illustrated solutions are included.
Type: Problem-Solving Task
This task asks the student to understand the relationship between slope and changes in x- and y-values of a linear function.
Type: Problem-Solving Task
This activity challenges students to recognize the relationship between slope and the difference in x- and y-values of a linear function. Help students solidify their understanding of linear functions and push them to be more fluent in their reasoning about slope and y-intercepts. This task has also produced a reasonable starting place for discussing point-slope form of a linear equation.
Type: Problem-Solving Task
Video/Audio/Animation
"Slope" is a fundamental concept in mathematics. Slope of a linear function is often defined as " the rise over the run"....but why?
Type: Video/Audio/Animation
Parent Resources
Problem-Solving Tasks
In this task, students are asked to determine the unit price of a product under two different circumstances. They are also asked to generalize the cost of producing x items in each case.
Type: Problem-Solving Task
This task provides a unique application of modeling with mathematics. Also, students often think that time must always be the independent variable and so may need some help understanding that one chooses the independent and dependent variable based on the way one wants to view a situation.
Type: Problem-Solving Task
Students graph proportional relationships and understand the unit rate as a measure of the steepness of the related line, called the slope. Students will also treat slopes more formally when they graph proportional relationships and interpret the unit rate as the slope of the graph.
Type: Problem-Solving Task
This task asks the student to graph and compare two proportional relationships and interpret the unit rate as the slope of the graph. Students are also asked to write an equation and graph each scenario.
Type: Problem-Solving Task
Students will answer questions about unit price of coffee, make a graph of the information, and explain the meaning of constant of proportionality/slope in the given context.
Type: Problem-Solving Task
This task could be put to good use in an instructional sequence designed to develop knowledge related to students' understanding of linear functions in contexts. Though students could work independently on the task, collaboration with peers is more likely to result in the exploration of a range of interpretations.
Type: Problem-Solving Task
This task has students engaging in a simple modeling exercise, taking verbal and numerical descriptions of battery life as a function of time and writing down linear models for these quantities. To draw conclusions about the quantities, students have to find a common way of describing them.
Type: Problem-Solving Task
This task lets students explore the differences between linear and non-linear functions. By contrasting the two, it reinforces properties of linear functions.
Type: Problem-Solving Task
The primary purpose of this task is to elicit common misconceptions that arise when students try to model situations with linear functions. This task, being multiple choice, could also serve as a quick assessment to gauge a class' understanding of modeling with linear functions.
Type: Problem-Solving Task
This task would be especially well-suited for instructional purposes. Students will benefit from a class discussion about the slope, y-intercept, x-intercept, and implications of the restricted domain for interpreting more precisely what the equation is modeling.
Type: Problem-Solving Task
The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.
Type: Problem-Solving Task
In this resource, real-world bivariate data is displayed in a scatter plot. The equation of the linear function which models the relationship between the two variables is provided, and it is graphed on the scatter plot. Students are asked to use the model to interpret the data and to make predictions.
Type: Problem-Solving Task
This task provides the opportunity for students to reason about graphs, slopes, and rates without having a scale on the axes or an equation to represent the graphs. Students who prefer to work with specific numbers can write in scales on the axes to help them get started.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
Students are asked to create and graph linear equations to compare the savings of two individuals. The purpose of the table in (a) is to help students complete (b) by noticing regularity in the repeated reasoning required to complete the table.
Type: Problem-Solving Task
This task asks students to reason about the relative costs per pound of two fruits without actually knowing what the costs are. Students who find this difficult may add a scale to the graph and reason about the meanings of the ordered pairs. Comparing the two approaches in a class discussion can be a profitable way to help students make sense of slope.
Type: Problem-Solving Task
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
This problem-solving task asks students to find a linear function that models something in the real world. After finding the equation of the linear relationship between the depth of the water and the distance across the channel, students have to verbalize the meaning of the slope and intercept of the line in the context of this situation. Commentary and illustrated solutions are included.
Type: Problem-Solving Task
This task asks the student to understand the relationship between slope and changes in x- and y-values of a linear function.
Type: Problem-Solving Task
This activity challenges students to recognize the relationship between slope and the difference in x- and y-values of a linear function. Help students solidify their understanding of linear functions and push them to be more fluent in their reasoning about slope and y-intercepts. This task has also produced a reasonable starting place for discussing point-slope form of a linear equation.
Type: Problem-Solving Task