Related Benchmarks
Related Access Points
Access Points
Related Resources
Formative Assessments
Lesson Plans
Original Student Tutorials
Perspectives Video: Experts
Perspectives Video: Professional/Enthusiasts
Perspectives Video: Teaching Ideas
Problem-Solving Tasks
Tutorials
Video/Audio/Animations
Student Resources
Original Student Tutorials
Learn how to graph linear functions by creating a table of values based on the equation in this interactive tutorial.
This is part 1 of a series of tutorials on linear functions.
Type: Original Student Tutorial
Learn how to create systems of linear equations to represent contextual situations in this interactive tutorial.
This part 6 in a 7-part series. Click below to explore the other tutorials in the series.
- Part 1: Solving Systems of Linear Equations: Using Graphs
- Part 2: Solving Systems of Linear Equations: Substitution
- Part 3: Solving Systems of Linear Equations: Basic Elimination
- Part 4: Solving Systems of Linear Equations: Advanced Elimination
- Part 5: Solving Systems of Linear Equations: Connecting Algebraic Methods to Graphing
- Part 7: Solving Systems of Linear Equations: Word Problems (Coming soon)
Type: Original Student Tutorial
Learn how to interpret key features of linear functions and translate between representations of linear functions through exploring jobs for teenagers in this interactive tutorial.
Type: Original Student Tutorial
Learn how to solve and graph compound inequalities and determine if solutions are viable in part 2 of this interactive tutorial series.
Click HERE to open Part 1.
Type: Original Student Tutorial
Learn how to write equations in two variables in this interactive tutorial.
Type: Original Student Tutorial
Learn how to solve and graph one variable inequalities, including compound inequalities, in part 1 of this interactive tutorial series.
Click HERE to open Part 2.
Type: Original Student Tutorial
Learn to graph linear inequalities in two variables to display their solutions as you complete this interactive tutorial.
Type: Original Student Tutorial
Learn to determine the number of possible solutions for a linear equation with this interactive tutorial.
Type: Original Student Tutorial
Write linear inequalities for different money situations in this interactive tutorial.
Type: Original Student Tutorial
Perspectives Video: Expert
<p>It's important to stay inside the lines of your project constraints to finish in time and under budget. This NASA systems engineer explains how constraints can actually promote creativity and help him solve problems!</p>
Type: Perspectives Video: Expert
Problem-Solving Tasks
This problem solving task asks students to examine the relationship between shops and crimes by using a correlation coefficient. The implications of linking correlation with causation are discussed.
Type: Problem-Solving Task
This problem solving task asks students to find the area of a triangle by using unit squares and line segments.
Type: Problem-Solving Task
This problem solving task challenges students to use ideas about linear functions in order to determine when certain angles are right angles.
Type: Problem-Solving Task
This problem solving task challenges students to find the linear, exponential and quadratic functions based on two points.
Type: Problem-Solving Task
This problem solving task asks students to predict and model US population based on a chart of US population data from 1982 to 1988.
Type: Problem-Solving Task
This simple conceptual problem does not require algebraic manipulation, but requires students to articulate the reasoning behind each statement. Students are asked to verify a given linear equation from data in a table and interpret its key components in context.
Type: Problem-Solving Task
The task provides an opportunity for students to engage in detailed analysis of the rate of change of the elevation.
Type: Problem-Solving Task
This problem is an exponential function example that uses the real-world problem of how fast rumors spread.
Type: Problem-Solving Task
In a geometric context, two distinct points ??1 and ??2 always determine a unique line in the Cartesian plane (this is one of the basic postulates of Euclidean geometry). Only the non-vertical lines, however, can be described by the graph of a function ??(??)=????+??. This task focuses on producing an explicit function ??(??) as long as the line is not vertical.
This problem allows the student to think geometrically about lines and then relate this geometry to linear functions. Or the student can work algebraically with equations to find the explicit equation of the line through two points (when that line is not vertical).
Type: Problem-Solving Task
The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even. This aspect of the task is illustrative of the mathematical practice of modeling with mathematics, and crucial as the system has an integer solution for both situations, that is, whether we include the dollar on the floor in the cash box or not.
Type: Problem-Solving Task
In this task, we are given the graph of two lines including the coordinates of the intersection point and the coordinates of the two vertical intercepts and are asked for the corresponding equations of the lines. It is a very straightforward task that connects graphs and equations and solutions and intersection points.
Type: Problem-Solving Task
This task would be especially well-suited for instructional purposes. Students will benefit from a class discussion about the slope, y-intercept, x-intercept, and implications of the restricted domain for interpreting more precisely what the equation is modeling.
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
Students are asked to solve an inequality in order to answer a real-world question.
Type: Problem-Solving Task
The student is given the equation 5x-2y=3 and asked, if possible, to write a second linear equation creating systems resulting in one, two, infinite, and no solutions.
Type: Problem-Solving Task
Tutorials
This video demonstrates solving a word problem by creating a system of linear equations that represents the situation and solving them using elimination.
Type: Tutorial
In this video, you will learn about Rene Descartes, and how he bridged the gap between algebra and geometry.
Type: Tutorial
This lecture shows how algebra is used to solve problems involving mixtures of solutions of different concentrations.
Type: Tutorial
Video/Audio/Animations
When should a system of equations with multiple variables be used to solve an Algebra problem, instead of using a single equation with a single variable?
Type: Video/Audio/Animation
The point-slope form of the equation for a line can describe any non-vertical line in the Cartesian plane, given the slope and the coordinates of a single point which lies on the line.
Type: Video/Audio/Animation
The two point form of the equation for a line can describe any non-vertical line in the Cartesian plane, given the coordinates of two points which lie on the line.
Type: Video/Audio/Animation
Parent Resources
Perspectives Video: Expert
<p>It's important to stay inside the lines of your project constraints to finish in time and under budget. This NASA systems engineer explains how constraints can actually promote creativity and help him solve problems!</p>
Type: Perspectives Video: Expert
Problem-Solving Tasks
This problem solving task asks students to examine the relationship between shops and crimes by using a correlation coefficient. The implications of linking correlation with causation are discussed.
Type: Problem-Solving Task
This problem solving task asks students to find the area of a triangle by using unit squares and line segments.
Type: Problem-Solving Task
This problem solving task challenges students to use ideas about linear functions in order to determine when certain angles are right angles.
Type: Problem-Solving Task
This problem solving task challenges students to find the linear, exponential and quadratic functions based on two points.
Type: Problem-Solving Task
This problem solving task asks students to predict and model US population based on a chart of US population data from 1982 to 1988.
Type: Problem-Solving Task
This simple conceptual problem does not require algebraic manipulation, but requires students to articulate the reasoning behind each statement. Students are asked to verify a given linear equation from data in a table and interpret its key components in context.
Type: Problem-Solving Task
The task provides an opportunity for students to engage in detailed analysis of the rate of change of the elevation.
Type: Problem-Solving Task
This problem is an exponential function example that uses the real-world problem of how fast rumors spread.
Type: Problem-Solving Task
In a geometric context, two distinct points ??1 and ??2 always determine a unique line in the Cartesian plane (this is one of the basic postulates of Euclidean geometry). Only the non-vertical lines, however, can be described by the graph of a function ??(??)=????+??. This task focuses on producing an explicit function ??(??) as long as the line is not vertical.
This problem allows the student to think geometrically about lines and then relate this geometry to linear functions. Or the student can work algebraically with equations to find the explicit equation of the line through two points (when that line is not vertical).
Type: Problem-Solving Task
The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even. This aspect of the task is illustrative of the mathematical practice of modeling with mathematics, and crucial as the system has an integer solution for both situations, that is, whether we include the dollar on the floor in the cash box or not.
Type: Problem-Solving Task
In this task, we are given the graph of two lines including the coordinates of the intersection point and the coordinates of the two vertical intercepts and are asked for the corresponding equations of the lines. It is a very straightforward task that connects graphs and equations and solutions and intersection points.
Type: Problem-Solving Task
This task would be especially well-suited for instructional purposes. Students will benefit from a class discussion about the slope, y-intercept, x-intercept, and implications of the restricted domain for interpreting more precisely what the equation is modeling.
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
Students are asked to solve an inequality in order to answer a real-world question.
Type: Problem-Solving Task
The student is given the equation 5x-2y=3 and asked, if possible, to write a second linear equation creating systems resulting in one, two, infinite, and no solutions.
Type: Problem-Solving Task