Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.
Related Standards
Related Access Points
Access Points
Related Resources
Formative Assessments
Lesson Plans
Perspectives Video: Professional/Enthusiasts
Perspectives Video: Teaching Idea
Problem-Solving Tasks
Teaching Ideas
Unit/Lesson Sequence
Worksheet
Student Resources
Perspectives Video: Professional/Enthusiast
<p>Get fired up as you learn more about ceramic glaze recipes and mathematical units.</p>
Type: Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.
Type: Problem-Solving Task
The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.
Type: Problem-Solving Task
This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.
At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.
Type: Problem-Solving Task
This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.
Type: Problem-Solving Task
This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.
Type: Problem-Solving Task
The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.
Type: Problem-Solving Task
This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.
Type: Problem-Solving Task
Students are asked to use units to determine if the given statement is valid.
Type: Problem-Solving Task
This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.
Type: Problem-Solving Task
This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"
This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.
Type: Problem-Solving Task
This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.
Type: Problem-Solving Task
Parent Resources
Perspectives Video: Professional/Enthusiast
<p>Get fired up as you learn more about ceramic glaze recipes and mathematical units.</p>
Type: Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.
Type: Problem-Solving Task
The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.
Type: Problem-Solving Task
This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.
At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.
Type: Problem-Solving Task
This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.
Type: Problem-Solving Task
This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.
Type: Problem-Solving Task
The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.
Type: Problem-Solving Task
This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.
Type: Problem-Solving Task
Students are asked to use units to determine if the given statement is valid.
Type: Problem-Solving Task
This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.
Type: Problem-Solving Task
This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"
This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.
Type: Problem-Solving Task
This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.
Type: Problem-Solving Task