Related Benchmarks
Related Access Points
Access Points
Given an equation in the form of x²= p and x³= q, use tools to determine real solutions where p is a perfect square up to 144 and q is a perfect cube from –125 to 125.
Related Resources
Formative Assessments
Lesson Plans
Original Student Tutorials
Perspectives Video: Teaching Idea
Problem-Solving Tasks
Tutorial
Student Resources
Original Student Tutorials
Learn how to simplify radicals in this interactive tutorial.
Type: Original Student Tutorial
Learn what non-perfect squares are and find the decimal approximation of their square roots in this interactive tutorial.
Type: Original Student Tutorial
Learn what perfect squares are and find their square roots in this interactive tutorial.
Type: Original Student Tutorial
Learn how equations can have 1 solution, no solution or infinitely many solutions in this interactive tutorial.
This is part five of five in a series on solving multi-step equations.
- Click HERE to open Part 1: Combining Like Terms
- Click HERE to open Part 2: The Distributive Property
- Click HERE to open Part 3: Variables on Both Sides
- Click HERE to open Part 4: Putting It All Together
- [CURRENT TUTORIAL] Part 5: How Many Solutions?
Type: Original Student Tutorial
Learn alternative methods of solving multi-step equations in this interactive tutorial.
This is part five of five in a series on solving multi-step equations.
- Click HERE to open Part 1: Combining Like Terms
- Click HERE to open Part 2: The Distributive Property
- Click HERE to open Part 3: Variables on Both Sides
- [CURRENT TUTORIAL] Part 4: Putting It All Together
- Click HERE to open Part 5: How Many Solutions?
Type: Original Student Tutorial
Learn how to solve multi-step equations that contain variables on both sides of the equation in this interactive tutorial.
This is part five of five in a series on solving multi-step equations.
- Click HERE to open Part 1: Combining Like Terms
- Click HERE to open Part 2: The Distributive Property
- [CURRENT TUTORIAL] Part 3: Variables on Both Sides
- Click HERE to open Part 4: Putting It All Together
- Click HERE to open Part 5: How Many Solutions?
Type: Original Student Tutorial
Explore how to solve multi-step equations using the distributive property in this interactive tutorial.
This is part two of five in a series on solving multi-step equations.
- Click HERE to open Part 1: Combining Like Terms
- [CURRENT TUTORIAL] Part 2: The Distributive Property
- Click HERE to open Part 3: Variables on Both Sides
- Click HERE to open Part 4: Putting It All Together
- Click HERE to open Part 5: How Many Solutions?
Type: Original Student Tutorial
Learn how to solve multi-step equations that contain like terms in this interactive tutorial.
This is part one of five in a series on solving multi-step equations.
- [CURRENT TUTORIAL] Part 1: Combining Like Terms
- Click HERE to open Part 2: The Distributive Property
- Click HERE to open Part 3: Variables on Both Sides
- Click HERE to open Part 4: Putting It All Together
- Click HERE to open Part 5: How Many Solutions?
Type: Original Student Tutorial
Learn how to explain the steps used to solve multi-step linear equations and provide reasons to support those steps with this interactive tutorial.
Type: Original Student Tutorial
Problem-Solving Tasks
Students are asked to write and solve an inequality to determine the number of people that can safely rent a boat.
Type: Problem-Solving Task
The student is asked to write and solve a two-step inequality to match the context.
Type: Problem-Solving Task
In this task, students are presented with a real-world problem involving the price of an item on sale. To answer the question, students must represent the problem by defining a variable and related quantities, and then write and solve an equation.
Type: Problem-Solving Task
In this activity, the student is asked to solve a variety of equations (one solution, infinite solutions, no solution) in the traditional algebraic manner and to use pictures of a pan balance to show the solution process.
Type: Problem-Solving Task
It is possible to say a lot about the solution to an equation without actually solving it, just by looking at the structure and operations that make up the equation. This exercise turns the focus away from the familiar "finding the solution" problem to thinking about what it really means for a number to be a solution of an equation.
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
Tutorial
This video will show how to solve a consecutive integer problem.
Type: Tutorial
Parent Resources
Problem-Solving Tasks
Students are asked to write and solve an inequality to determine the number of people that can safely rent a boat.
Type: Problem-Solving Task
The student is asked to write and solve a two-step inequality to match the context.
Type: Problem-Solving Task
In this task, students are presented with a real-world problem involving the price of an item on sale. To answer the question, students must represent the problem by defining a variable and related quantities, and then write and solve an equation.
Type: Problem-Solving Task
In this activity, the student is asked to solve a variety of equations (one solution, infinite solutions, no solution) in the traditional algebraic manner and to use pictures of a pan balance to show the solution process.
Type: Problem-Solving Task
It is possible to say a lot about the solution to an equation without actually solving it, just by looking at the structure and operations that make up the equation. This exercise turns the focus away from the familiar "finding the solution" problem to thinking about what it really means for a number to be a solution of an equation.
Type: Problem-Solving Task
The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task
In this problem-solving task students are challenged to apply their understanding of linear relationships to determine the amount of chicken and steak needed for a barbecue, which will include creating an equation, sketching a graph, and interpreting both. This resource also includes annotated solutions.
Type: Problem-Solving Task