Chemistry 2 Honors   (#2003360)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices: Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:
  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

General Information

Course Number: 2003360
Course Path:
Abbreviated Title: CHEM 2 HON
Course Length: Year (Y)
Course Type: Core Academic Course
Course Level: 3
Course Status: Course Approved
Grade Level(s): 9,10,11,12

Equivalent Courses

Any of these are equivalent to the course required for graduation or certification.

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Graphing Linear Functions Part 1: Table of Values:

Learn how to graph linear functions by creating a table of values based on the equation in this interactive tutorial.

This is part 1 of a series of tutorials on linear functions.

Type: Original Student Tutorial

Quadratic Function Part 2: Launches:

Learn about different formats of quadratic equations and their graphs with experiments involving launching and shooting of balls in this interactive tutorial.

This is part 2 of a two-part series: Click HERE to open part 1.

Type: Original Student Tutorial

Quadratic Functions Part 1: Ball Games:

Join us as we watch ball games and explore how the height of a ball bounce over time is represented by quadratic functions, which provides opportunities to interpret key features of the function in this interactive tutorial.

This is part 1 of a two-part series: Click HERE to open part 2.

Type: Original Student Tutorial

Newton's Insight: Standing on the Shoulders of Giants:

Discover how Isaac Newton's background, talents, interests, and goals influenced his groundbreaking work in this interactive tutorial.

This is part 4 in a 4-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Movies Part 2: What’s the Spread?:

Follow Jake along as he relates box plots with other plots and identifies possible outliers in real-world data from surveys of moviegoers' ages in part 2 in this interactive tutorial.

This is part 2 of 2-part series, click HERE to view part 1.

Type: Original Student Tutorial

Movies Part 1: What's the Spread?:

Follow Jake as he displays real-world data by creating box plots showing the 5 number summary and compares the spread of the data from surveys of the ages of moviegoers in part 1 of this interactive tutorial.

This is part 1 of 2-part series, click HERE to view part 2.

Type: Original Student Tutorial

Exponential Functions Part 3: Decay:

Learn about exponential decay as you calculate the value of used cars by examining equations, graphs, and tables in this interactive tutorial.

Type: Original Student Tutorial

Linear Functions: Jobs:

Learn how to interpret key features of linear functions and translate between representations of linear functions through exploring jobs for teenagers in this interactive tutorial. 

Type: Original Student Tutorial

Exponential Functions Part 2: Growth:

Learn about exponential growth in the context of interest earned as money is put in a savings account by examining equations, graphs, and tables in this interactive tutorial.

Type: Original Student Tutorial

Exponential Functions Part 1:

Learn about exponential functions and how they are different from linear functions by examining real world situations, their graphs and their tables in this interactive tutorial.

Type: Original Student Tutorial

Turtles and Towns:

Explore the impacts on sea turtles, humans, and the economy when we live, work, and play at the beach with this interactive tutorial.

Type: Original Student Tutorial

How Viral Disease Spreads:

Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.

Type: Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Testing Scientific Claims:

Learn how to test scientific claims and judge competing hypotheses by understanding how they can be tested against one another in this interactive tutorial.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Hallowed Words: Evaluating a Speaker's Effectiveness:

Learn how to evaluate a speaker's point of view, reasoning, and use of evidence. In this interactive tutorial, you'll examine Abraham Lincoln's "Gettysburg Address" and evaluate the effectiveness of his words by analyzing his use of reasoning and evidence. 

Type: Original Student Tutorial

The Macromolecules of Life: Carbohydrates:

Learn about the basic molecular structures and primary functions of carbohydrates with this interactive tutorial.

This is part 2 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

Macromolecules: Lipids:

Learn about the basic molecular structures and primary functions of lipids with this interactive tutorial.

This is part 3 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

A Study in Sustainability:

Learn how individual and societal choices affect sustainability and explore ways that you can reduce your impact on the environment with this interactive tutorial.

Type: Original Student Tutorial

Data and Frequencies:

Learn to define, calculate, and interpret marginal frequencies, joint frequencies, and conditional frequencies in the context of the data with this interactive tutorial.

Type: Original Student Tutorial

Enzymes are the Stuff of Life:

At any instant in your life, millions and millions of enzymes are hard at work in your body as well as all around you making your life easier!

By the end of this tutorial you should be able to describe how enzymes speed up most biochemical reactions as well as identify the various factors that affect enzyme activity like pH and temperature.

Type: Original Student Tutorial

Sustainability:

Learn the definition of "sustainability" and understand how our throw away consumer lifestyle has affected the environment in a negative way. In this interactive tutorial, you'll explore possible solutions to prevent further harm to the environment.

Type: Original Student Tutorial

The Macromolecules of Life: Proteins:

Learn about the basic molecular structures and primary functions of proteins with this interactive tutorial.

This is part 4 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Earliest Beginnings:

Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.

Type: Original Student Tutorial

Scientific Laws and Theories:

Learn what scientific laws and scientific theories are and how they are different from what we commonly call laws and theories outside of science with this interactive tutorial.

Type: Original Student Tutorial

Graphing Quadratic Functions:

Follow as we discover key features of a quadratic equation written in vertex form in this interactive tutorial.

Type: Original Student Tutorial

The Macromolecules of Life: Nucleic Acids:

Learn to identify and describe the structural and functional features of nucleic acids, one of the 4 primary macromolecule groups in biological systems, with this interactive tutorial.

This is Part 3 in 5-part series. Click below to open the other tutorials in the series:

Type: Original Student Tutorial

Observation vs. Inference:

Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.

Type: Original Student Tutorial

Cool Case Files:

Learn that a scientific theory is the culmination of many experiments and supplies the most powerful explanation that scientists have to offer with this interactive tutorial.

Type: Original Student Tutorial

Defining Science:

Learn how to define what science is and what it is not. In this interactive tutorial, you will identify why certain ways of exploring the universe can and cannot be considered scientific practices.

Type: Original Student Tutorial

The Macromolecules of Life: Overview:

Learn to identify the four basic biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids) by structure and function with this interactive tutorial.

This is part 1 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Water and Life:

Learn how the chemical properties of water relate to its physical properties and make it essential for life with this interactive tutorial.

Type: Original Student Tutorial

Question Quest:

Learn to distinguish between questions that can be answered by science and questions that science cannot answer. This interactive tutorial will help you distinguish between science and other ways of knowing, including art, religion, and philosophy.

Type: Original Student Tutorial

Chemistry With a Conscience:

Explore green chemistry and what it means to be benign by design in this interactive tutorial.

Type: Original Student Tutorial

Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game

Educational Software / Tool

Two Way Frequency Excel Spreadsheet:

This Excel spreadsheet allows the educator to input data into a two way frequency table and have the resulting relative frequency charts calculated automatically on the second sheet. This resource will assist the educator in checking student calculations on student-generated data quickly and easily.

Steps to add data: All data is input on the first spreadsheet; all tables are calculated on the second spreadsheet

  1. Modify column and row headings to match your data.
  2. Input joint frequency data.
  3. Click the second tab at the bottom of the window to see the automatic calculations.

Type: Educational Software / Tool

Lesson Plans

The Surprising World of Complex Systems:

This lesson introduces students to complex systems and to basic concepts from the field of system dynamics that lie at the heart of systems thinking. These concepts include stocks and flows, feedback loops, unintended consequences, and the basic principle that the behavior of complex systems can best be understood by looking at the system as a whole, and specifically by analyzing the system’s underlying structure. The lesson introduces these topics through an immersion in (and a role-play simulation of) the dynamics of urban recycling systems, many of which have been thrown into crisis in the past two years. Through this current-affairs example of complex systems in crisis, we identify some key structural features that help to explain how these systems behave over time. We also discover how well-intentioned action can cause negative unintended consequences when we try to intervene in a complex system without understanding how it operates.

Type: Lesson Plan

CO2: Find Out What It Means to You:

This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate. 

Type: Lesson Plan

Perspectives Video: Experts

Jumping Robots and Quadratics:

<p>Jump to it and learn more about how quadratic equations are&nbsp;used in robot navigation problem solving!</p>

Type: Perspectives Video: Expert

Pendulums and Energy Transformations:

Explore how pendulums show the transformation of gravitational potential energy to kinetic energy and back with Dr. Simon Capstick in this engaging video. Don't miss his broken-nose defying test of the physics with a bowling ball pendulum.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Recognizing Redox Reactions:

Chemistry is pretty sweet. Also tasty if you understand oxidation and reduction reactions, but it may take a little MacGyvering.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protein Structure and Function:

Don't get twisted in a knot about proteins; learn about their structure!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Fingerprinting:

Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

On the Origin of Crude Oil:

An oil scientist explains how crude oil is formed and how it behaves in the environment.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Environmental Restoration Techniques:

Scientists can be superheroes when it comes to saving rivers! Watch this video to find out more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Sea Turtle Conservation:

Watch as this scientist shines a light on a type of pollution that affects sea turtles.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Monitoring Oil Spill Impacts through Community Involvement :

Don't cry over spilled oil. Take action instead! Learn how students can help scientists who are studying what happens to spilled oil and over time how it affects the environment.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Managing Lionfish Populations:

<p>Invasive lionfish are taking a bite out of the ecosystem of Biscayne Bay. Biologists are looking for new ways to remove them, including encouraging recreational divers to bite back!</p>

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Unit Conversions:

<p>Get fired up as you learn more about ceramic glaze recipes and mathematical units.</p>

Type: Perspectives Video: Professional/Enthusiast

Making Charcoal:

Get sooted up and join a collier as he discusses charcoal production at historic Mission San Luis.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Managing Waste Disposal with Landfills and Recycling:

Landfills have a come a long way! Explore modern techniques for managing our environmental impact through responsible waste disposal.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshow

What Killed the Dinosaurs?:

It is often difficult, sometimes impossible, to get a definitive answer to some of life's most enduring questions. Scientific processes provide alternative explanations for a wide variety of phenomena by piecing together all the available information. This interactive activity on the Evolution website explores four possible hypotheses to explain what caused the extinction of the dinosaurs 65 million years ago, inviting the viewer to consider the evidence and come to their own decision.

Type: Presentation/Slideshow

Problem-Solving Tasks

Speed Trap:

The purpose of this task is to allow students to demonstrate an ability to construct boxplots and to use boxplots as the basis for comparing distributions.

Type: Problem-Solving Task

Musical Preferences:

This problem solving task asks students to make deductions about the kind of music students enjoy by examining data in a two-way table.

Type: Problem-Solving Task

SAT Scores:

This problem solving task challenges students to answer probability questions about SAT scores, using distribution and mean to solve the problem.

Type: Problem-Solving Task

Haircut Costs:

This problem could be used as an introductory lesson to introduce group comparisons and to engage students in a question they may find amusing and interesting.

Type: Problem-Solving Task

Coffee and Crime:

This problem solving task asks students to examine the relationship between shops and crimes by using a correlation coefficient. The implications of linking correlation with causation are discussed.

Type: Problem-Solving Task

Should We Send Out a Certificate?:

The purpose of this task is to have students complete normal distribution calculations and to use properties of normal distributions to draw conclusions.

Type: Problem-Solving Task

Do You Fit in This Car?:

This task requires students to use the normal distribution as a model for a data distribution. Students must use given means and standard deviations to approximate population percentages.

Type: Problem-Solving Task

Random Walk III:

The task provides a context to calculate discrete probabilities and represent them on a bar graph.

Type: Problem-Solving Task

How thick is a soda can? (Variation II):

This problem solving task asks students to explain which measurements are needed to estimate the thickness of a soda can. Multiple solution processes are presented.

Type: Problem-Solving Task

How thick is a soda can? (Variation I):

This problem solving task challenges students to find the surface area of a soda can, calculate how many cubic centimeters of aluminum it contains, and estimate how thick it is.

Type: Problem-Solving Task

How many leaves on a tree? (Version 2):

This is a mathematical modeling task aimed at making a reasonable estimate for something which is too large to count accurately, the number of leaves on a tree.

Type: Problem-Solving Task

How many leaves on a tree?:

This is a mathematical modeling task aimed at making a reasonable estimate for something which is too large to count accurately, the number of leaves on a tree.

Type: Problem-Solving Task

How many cells are in the human body?:

This problem solving task challenges students to apply the concepts of mass, volume, and density in the real-world context to find how many cells are in the human body.

Type: Problem-Solving Task

Eratosthenes and the circumference of the earth:

This problem solving task gives an interesting context for implementing ideas from geometry and trigonometry.

Type: Problem-Solving Task

Archimedes and the King's Crown:

This problem solving task uses the tale of Archimedes and the King of Syracuse's crown to determine the volume and mass of gold and silver.

Type: Problem-Solving Task

As the Wheel Turns:

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task

Finding Parabolas through Two Points:

This problem-solving task challenges students to find all quadratic functions described by given equation and coordinates, and describe how the graphs of those functions are related to one another.

Type: Problem-Solving Task

Warming and Cooling:

This task is meant to be a straight-forward assessment task of graph reading and interpreting skills. This task helps reinforce the idea that when a variable represents time, t = 0 is chosen as an arbitrary point in time and positive times are interpreted as times that happen after that.

Type: Problem-Solving Task

Throwing Baseballs:

This task could be used for assessment or for practice. It allows students to compare characteristics of two quadratic functions that are each represented differently, one as the graph of a quadratic function and one written out algebraically. Specifically, students are asked to determine which function has the greatest maximum and the greatest non-negative root.

Type: Problem-Solving Task

Average Cost:

This task asks students to find the average, write an equation, find the domain, and create a graph of the cost of producing DVDs.

Type: Problem-Solving Task

Weed Killer:

The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.

Type: Problem-Solving Task

Telling a Story with Graphs:

In this task students are given graphs of quantities related to weather. The purpose of the task is to show that graphs are more than a collection of coordinate points; they can tell a story about the variables that are involved, and together they can paint a very complete picture of a situation, in this case the weather. Features in one graph, like maximum and minimum points, correspond to features in another graph. For example, on a rainy day, the solar radiation is very low, and the cumulative rainfall graph is increasing with a large slope.

Type: Problem-Solving Task

Logistic Growth Model, Explicit Version:

This problem introduces a logistic growth model in the concrete settings of estimating the population of the U.S. The model gives a surprisingly accurate estimate and this should be contrasted with linear and exponential models.

Type: Problem-Solving Task

Logistic Growth Model, Abstract Version:

This task is for instructional purposes only and students should already be familiar with some specific examples of logistic growth functions. The goal of this task is to have students appreciate how different constants influence the shape of a graph.

Type: Problem-Solving Task

How Is the Weather?:

This task can be used as a quick assessment to see if students can make sense of a graph in the context of a real world situation. Students also have to pay attention to the scale on the vertical axis to find the correct match. The first and third graphs look very similar at first glance, but the function values are very different since the scales on the vertical axes are very different. The task could also be used to generate a group discussion on interpreting functions given by graphs.

Type: Problem-Solving Task

Dinosaur Bones:

The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.

Type: Problem-Solving Task

Bus and Car:

This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.

At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating I:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating II:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Fuel Efficiency:

The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.

Type: Problem-Solving Task

How Much Is a Penny Worth?:

This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.

Type: Problem-Solving Task

Runner's World:

Students are asked to use units to determine if the given statement is valid.

Type: Problem-Solving Task

Harvesting the Fields:

This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.

Type: Problem-Solving Task

Sum of Even and Odd:

Students explore and manipulate expressions based on the following statement:

A function f defined for -a < x="">< a="" is="" even="" if="" f(-x)="f(x)" and="" is="" odd="" if="" f(-x)="-f(x)" when="" -a="">< x="">< a.="" in="" this="" task="" we="" assume="" f="" is="" defined="" on="" such="" an="" interval,="" which="" might="" be="" the="" full="" real="" line="" (i.e.,="" a="">

Type: Problem-Solving Task

Graphs of Quadratic Functions:

Students compare graphs of different quadratic functions, then produce equations of their own to satisfy given conditions.

This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is. It is effective after students have graphed parabolas in vertex form (y=a(x–h)2+k), but have not yet explored graphing other forms.

Type: Problem-Solving Task

Traffic Jam:

This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"

This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Felicia's Drive:

This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Type: Problem-Solving Task

Graphs of Power Functions:

This task requires students to recognize the graphs of different (positive) powers of x.

Type: Problem-Solving Task

The Canoe Trip, Variation 2:

The primary purpose of this task is to lead students to a numerical and graphical understanding of the behavior of a rational function near a vertical asymptote, in terms of the expression defining the function.

Type: Problem-Solving Task

The Canoe Trip, Variation 1:

The purpose of this task is to give students practice constructing functions that represent a quantity of interest in a context, and then interpreting features of the function in the light of the context. It can be used as either an assessment or a teaching task.

Type: Problem-Solving Task

Calories in a Sports Drink:

This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.

Type: Problem-Solving Task

Tutorials

Graphs and Solutions of Functions in Quadratic Equations:

You will learn how the parent function for a quadratic function is affected when f(x) = x2.

Type: Tutorial

Graphing Quadractic Functions in Vertex Form:

This tutorial will help the students to identify the vertex of a parabola from the equation, and then graph the parabola.

Type: Tutorial

Graphing Quadratic Equations:

This tutorial helps the learners to graph the equation of a quadratic function using the coordinates of the vertex of a parabola and its x- intercepts.

Type: Tutorial

Graphing Exponential Equations:

This tutorial will help you to learn about exponential functions by graphing various equations representing exponential growth and decay.

Type: Tutorial

Oxidation and Reduction Review From Biological Point-of-View:

This Khan Academy video explains oxidation and reduction reactions from a biological point of view.

Type: Tutorial

DNA:

This Khan Academy video describes the structure of the molecule DNA in great detail. It also discuses the role DNA plays in the process of protein synthesis, explaining transcription and translation. The video discusses the relationship between DNA and chromosomes as well.

Type: Tutorial

The Role of Vitamins in Human Nutrition:

This tutorial will help you to understand the role that vitamins play in human nutrition. Vitamins interact with enzymes to allow them to function more effectively. Though vitamins are not consumed in metabolism, they are vital for the process of metabolism to occur.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

How Polarity Makes Water Behave Strangely:

Water is both essential and unique. Many of its particular qualities stem from the fact that it consists of two hydrogen atoms and one oxygen, therefore creating an unequal sharing of electrons. From fish in frozen lakes to ice floating on water, Christina Kleinberg describes the effects of polarity.

Type: Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

Activation Energy-Kickstarting Chemical Reactions:

Chemical reactions are constantly happening in your body -- even at this very moment. But what catalyzes these important reactions? This short video explains how enzymes assist the process, while providing a light-hearted way to remember how activation energy works.

Type: Tutorial

The Chemical Structure of DNA:


This tutorial will help the learners with their understanding of chemical structure of DNA.

Type: Tutorial

Interactive Carbon Lab:

This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.

Type: Tutorial

Amino Acids and Proteins:

This tutorial will help the learners to review the formation and 3D structures of amino acids with proteins.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Oxidation and Reduction in Cellular Respiration:

This video explains oxidation and reduction in cellular respiration.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Proteins:

Paul Anderson explains the structure and importance of proteins. He describes how proteins are created from amino acids connected by dehydration synthesis. He shows the importance of chemical properties in the R-groups of individual amino acids in the polypeptide.

Type: Video/Audio/Animation

Graphing Lines 1:

Khan Academy video tutorial on graphing linear equations: "Algebra: Graphing Lines 1"

Type: Video/Audio/Animation

Fitting a Line to Data:

Khan Academy tutorial video that demonstrates with real-world data the use of Excel spreadsheet to fit a line to data and make predictions using that line.

Type: Video/Audio/Animation

Evolving Ideas: Isn't evolution just a theory?:

This video examines the vocabulary essential for understanding the nature of science and evolution and illustrates how evolution is a powerful, well-supported scientific explanation for the relatedness of all life. A clear definition and description of scientific theory is given.

Type: Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Introducing Green Chemistry: The Science of Solutions:

This lesson introduces students to Green Chemistry, the design of chemical products and processes that reduce or eliminate the use and/or the generation of hazardous substances. Green chemistry is a proactive approach to pollution prevention that teaches chemists how to develop products and materials in a manner that does not use hazardous substances, thus avoiding much waste, hazards and associated costs. The goal of this lesson is to introduce students to the 12 Principles of Green Chemistry and how they relate to a chemical process. These principles provide a framework for scientists, engineers and chemistry students to use when designing new materials, products, processes, and systems. The Principles focus on sustainable design criteria and have proven to be the source of innovative solutions to a wide range of problems. Through this lesson, students will also use weight and measurement to understand the concept of a recipe as it is applied to a chemical process and think critically about that process and how it might be improved. Students will be asked to use a wasteful, inefficient procedure to make glue and be challenged to improve the procedure-during which they will unknowingly use the 12 Principles. Before starting this lesson, students should have been introduced to the periodic table and properties of matter. The estimated time for this lesson is 50-60 minutes. 

Type: Video/Audio/Animation

Virtual Manipulatives

Slope Slider:

In this activity, students adjust slider bars which adjust the coefficients and constants of a linear function and examine how their changes affect the graph. The equation of the line can be in slope-intercept form or standard form. This activity allows students to explore linear equations, slopes, and y-intercepts and their visual representation on a graph. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Graphing Equations Using Intercepts:

This resource provides linear functions in standard form and asks the user to graph it using intercepts on an interactive graph below the problem. Immediate feedback is provided, and for incorrect responses, each step of the solution is thoroughly modeled.

Type: Virtual Manipulative

Split Brain Experiments:

The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.

Type: Virtual Manipulative

Enzyme-Substrate Docking:

This virtual manipulative will help the students learn about enzyme-substrate docking. Students will observe that the shapes of these surfaces and electrostatic forces are the major factors that govern docking.

Type: Virtual Manipulative

Graphing Lines:

Allows students access to a Cartesian Coordinate System where linear equations can be graphed and details of the line and the slope can be observed.

Type: Virtual Manipulative

Pendulum Lab:


Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. Students can vary friction and the strength of gravity.

  • Design experiments to describe how variables affect the motion of a pendulum
  • Use a photogate timer to determine quantitatively how the period of a pendulum depends on the variables you described
  • Determine the gravitational acceleration of planet X
  • Explain the conservation of Mechanical energy concept using kinetic energy and gravitational potential energy
  • Describe energy chart from position or selected speeds

Type: Virtual Manipulative

Box Plot:

In this activity, students use preset data or enter in their own data to be represented in a box plot. This activity allows students to explore single as well as side-by-side box plots of different data. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Virtual Manipulative

Data Flyer:

Using this virtual manipulative, students are able to graph a function and a set of ordered pairs on the same coordinate plane. The constants, coefficients, and exponents can be adjusted using slider bars, so the student can explore the affect on the graph as the function parameters are changed. Students can also examine the deviation of the data from the function. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Normal Distribution Interactive Activity:

With this online tool, students adjust the standard deviation and sample size of a normal distribution to see how it will affect a histogram of that distribution. This activity allows students to explore the effect of changing the sample size in an experiment and the effect of changing the standard deviation of a normal distribution. Tabs at the top of the page provide access to supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Function Flyer:

In this online tool, students input a function to create a graph where the constants, coefficients, and exponents can be adjusted by slider bars. This tool allows students to explore graphs of functions and how adjusting the numbers in the function affect the graph. Using tabs at the top of the page you can also access supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Advanced Data Grapher:

This is an online graphing utility that can be used to create box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots.

Type: Virtual Manipulative

Curve Fitting:

With a mouse, students will drag data points (with their error bars) and watch the best-fit polynomial curve form instantly. Students can choose the type of fit: linear, quadratic, cubic, or quartic. Best fit or adjustable fit can be displayed.

Type: Virtual Manipulative

Equation Grapher:

This interactive simulation investigates graphing linear and quadratic equations. Users are given the ability to define and change the coefficients and constants in order to observe resulting changes in the graph(s).

Type: Virtual Manipulative

Potential/Kinetic Energy Simulation:

Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.

Type: Virtual Manipulative

Histogram Tool:

This virtual manipulative histogram tool can aid in analyzing the distribution of a dataset. It has 6 preset datasets and a function to add your own data for analysis.

Type: Virtual Manipulative

Multi Bar Graph:

This activity allows the user to graph data sets in multiple bar graphs. The color, thickness, and scale of the graph are adjustable which may produce graphs that are misleading. Users may input their own data, or use or alter pre-made data sets. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Histogram:

In this activity, students can create and view a histogram using existing data sets or original data entered. Students can adjust the interval size using a slider bar, and they can also adjust the other scales on the graph. This activity allows students to explore histograms as a way to represent data as well as the concepts of mean, standard deviation, and scale. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.
Integrate Standards for Mathematical Practice (MP) as applicable.
  • MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
  • MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
  • MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
  • MAFS.K12.MP.4.1 Model with mathematics.
  • MAFS.K12.MP.5.1 Use appropriate tools strategically.
  • MAFS.K12.MP.6.1 Attend to precision.
  • MAFS.K12.MP.7.1 Look for and make use of structure.
  • MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.