Remarks
Examples of Opportunities for In-Depth FocusThis is a culminating standard for extending multiplication and division to fractions.
Fluency Expectations or Examples of Culminating Standards
Students interpret and compute quotients of fractions and solve word problems involving division of fractions by fractions. This completes the extension of operations to fractions.
Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.
- Assessment Limits :
At least the divisor or dividend needs to be a non-unit fraction. Dividing a unit fraction by a whole number or vice versa (e.g., ÷ ?? or ?? ÷ , where a is a whole number) is below grade level. - Calculator :
No
- Context :
Allowable
- Test Item #: Sample Item 1
- Question:
An expression is shown.
What is the value of the expression?
- Difficulty: N/A
- Type: EE: Equation Editor
- Test Item #: Sample Item 2
- Question:
An expression is shown.
What is the value of the expression?
- Difficulty: N/A
- Type: EE: Equation Editor
- Test Item #: Sample Item 3
- Question:
A rectangular plot of land has an area of square kilometers and a length of kilometer.
What is the width of the plot of land?
- Difficulty: N/A
- Type: EE: Equation Editor
- Test Item #: Sample Item 4
- Question:
Which question can be answered using the expression ?
- Difficulty: N/A
- Type: MC: Multiple Choice
Related Courses
Related Access Points
Related Resources
Educational Game
Formative Assessments
Lesson Plans
Problem-Solving Tasks
Professional Development
Student Center Activity
Tutorial
Video/Audio/Animation
STEM Lessons - Model Eliciting Activity
Fancy Fractions Catering Company will be hosting a party and need your help to make it happen! Your help is needed to determine which recipe would be best for them to use in their pasta dish taking into account ingredient cost and customer preference.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx
MFAS Formative Assessments
Students are asked to write a story context for a given fraction division problem.
Students are asked to complete two fraction division problems – one with fractions and one with mixed numbers.
Students are asked to write and evaluate a numerical expression involving division of fractions and mixed numbers to model and solve a word problem.
Students are asked to explain the relationship between a fraction division word problem and either a visual model or an equation.
Student Resources
Educational Game
Test your fraction skills by answering questions on this site. This quiz asks you to simplify fractions, convert fractions to decimals and percentages, and answer algebra questions involving fractions. You can even choose difficulty level, question types, and time limit.
Type: Educational Game
Problem-Solving Tasks
Students are asked to solve a distance problem involving fractions.
Type: Problem-Solving Task
Students are asked to solve a fraction division problem using both a visual model and the standard algorithm within a real-world context.
Type: Problem-Solving Task
Students are asked a series of questions involving a fraction and a whole number within the context of a recipe. Students are asked to solve a problem using both a visual model and the standard algorithm.
Type: Problem-Solving Task
Students are asked to solve a distance problem involving fractions. The purpose of this task is to help students extend their understanding of division of whole numbers to division of fractions, and given the simple numbers used, it is most appropriate for students just learning about fraction division because it lends itself easily to a pictorial solution.
Type: Problem-Solving Task
Students are asked to use fractions to determine how many hours it will take a car to travel a given distance.
Type: Problem-Solving Task
Students are asked to use fractions to determine how long a video game can be played.
Type: Problem-Solving Task
The purpose of this task is to help students explore the meaning of fraction division and to connect it to what they know about whole-number division. Students are asked to explain why the quotient of two fractions with common denominators is equal to the quotient of the numerators of those fractions.
Type: Problem-Solving Task
This task builds on a fifth grade fraction multiplication task, "Drinking Juice." This task uses the identical context, but asks the corresponding "Number of Groups Unknown" division problem. See "Drinking Juice, Variation 3" for the "Group Size Unknown" version.
Type: Problem-Solving Task
Students are asked to solve a fraction division problem using a visual model and the standard algorithm.
Type: Problem-Solving Task
This instructional task requires that the students model each problem with some type of fractions manipulatives or drawings. This could be pattern blocks, student or teacher-made fraction strips, or commercially produced fraction pieces. At a minimum, students should draw pictures of each. The above problems are meant to be a progression which require more sophisticated understandings of the meaning of fractions as students progress through them.
Type: Problem-Solving Task
Student Center Activity
Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.
Type: Student Center Activity
Tutorial
In this tutorial, you will see how mixed numbers can be divided.
Type: Tutorial
Video/Audio/Animation
When working with fractions, divisions can be converted to multiplication by the divisor's reciprocal. This chapter explains why.
Type: Video/Audio/Animation
Parent Resources
Problem-Solving Tasks
Students are asked to solve a distance problem involving fractions.
Type: Problem-Solving Task
Students are asked to solve a fraction division problem using both a visual model and the standard algorithm within a real-world context.
Type: Problem-Solving Task
Students are asked a series of questions involving a fraction and a whole number within the context of a recipe. Students are asked to solve a problem using both a visual model and the standard algorithm.
Type: Problem-Solving Task
Students are asked to solve a distance problem involving fractions. The purpose of this task is to help students extend their understanding of division of whole numbers to division of fractions, and given the simple numbers used, it is most appropriate for students just learning about fraction division because it lends itself easily to a pictorial solution.
Type: Problem-Solving Task
Students are asked to use fractions to determine how many hours it will take a car to travel a given distance.
Type: Problem-Solving Task
Students are asked to use fractions to determine how long a video game can be played.
Type: Problem-Solving Task
The purpose of this task is to help students get a better understanding of multiplying and dividing using fractions.
Type: Problem-Solving Task
The purpose of this task is to help students explore the meaning of fraction division and to connect it to what they know about whole-number division. Students are asked to explain why the quotient of two fractions with common denominators is equal to the quotient of the numerators of those fractions.
Type: Problem-Solving Task
This task builds on a fifth grade fraction multiplication task, "Drinking Juice." This task uses the identical context, but asks the corresponding "Number of Groups Unknown" division problem. See "Drinking Juice, Variation 3" for the "Group Size Unknown" version.
Type: Problem-Solving Task
Students are asked to solve a fraction division problem using a visual model and the standard algorithm.
Type: Problem-Solving Task
This instructional task requires that the students model each problem with some type of fractions manipulatives or drawings. This could be pattern blocks, student or teacher-made fraction strips, or commercially produced fraction pieces. At a minimum, students should draw pictures of each. The above problems are meant to be a progression which require more sophisticated understandings of the meaning of fractions as students progress through them.
Type: Problem-Solving Task