A. The distribution and abundance of organisms is determined by the interactions between organisms, and between organisms and the non-living environment.
B. Energy and nutrients move within and between biotic and abiotic components of ecosystems via physical, chemical and biological processes.
C. Human activities and natural events can have profound effects on populations, biodiversity and ecosystem processes.
Related Courses
Related Access Points
Related Resources
Lesson Plans
Original Student Tutorials
Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
Perspectives Video: Teaching Idea
Projects
Teaching Ideas
Text Resources
Tutorial
STEM Lessons - Model Eliciting Activity
The environmental conditions in parks can influence the availability of food, light, space, and water and hence affect the growth and development of animals. It can become worse and lead to endangerment and extinction of various species. The following are areas in nature that can be affected: lakes, plants, animal life in and outside of water and many more.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
The focus of this MEA is oil spills and their effect on the environment. In this activity, students from a fictitious class are studying about the effects of an oil spill on marine ecosystems and have performed an experiment in which they were asked to try to rid a teaspoon of corn oil from a baking pan filled with two liters of water as thoroughly as possible in a limited timeframe and with limited resources. By examining, analyzing, and evaluating experimental data related to resource usage, disposal, and labor costs, students must face the tradeoffs that are involved in trying to preserve an ecosystem when time, money, and resources are limited.
This MEA gives the students an opportunity to learn about sustainability and then apply that knowledge to help EcoAthletica determine the location for their next sustainable tourism resort. The students will use a variety of criteria and the definition of sustainability and sustainable tourism to create a model for choosing locations.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
Original Student Tutorials Science - Grades 9-12
Learn how individual and societal choices affect sustainability and explore ways that you can reduce your impact on the environment with this interactive tutorial.
Learn the definition of "sustainability" and understand how our throw away consumer lifestyle has affected the environment in a negative way. In this interactive tutorial, you'll explore possible solutions to prevent further harm to the environment.
Student Resources
Original Student Tutorials
Learn how individual and societal choices affect sustainability and explore ways that you can reduce your impact on the environment with this interactive tutorial.
Type: Original Student Tutorial
Learn the definition of "sustainability" and understand how our throw away consumer lifestyle has affected the environment in a negative way. In this interactive tutorial, you'll explore possible solutions to prevent further harm to the environment.
Type: Original Student Tutorial
Lesson Plan
This lesson introduces students to complex systems and to basic concepts from the field of system dynamics that lie at the heart of systems thinking. These concepts include stocks and flows, feedback loops, unintended consequences, and the basic principle that the behavior of complex systems can best be understood by looking at the system as a whole, and specifically by analyzing the system’s underlying structure. The lesson introduces these topics through an immersion in (and a role-play simulation of) the dynamics of urban recycling systems, many of which have been thrown into crisis in the past two years. Through this current-affairs example of complex systems in crisis, we identify some key structural features that help to explain how these systems behave over time. We also discover how well-intentioned action can cause negative unintended consequences when we try to intervene in a complex system without understanding how it operates.
Type: Lesson Plan
Perspectives Video: Expert
Watch as this scientist shines a light on a type of pollution that affects sea turtles.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Tutorial
This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.
Type: Tutorial
Parent Resources
Perspectives Video: Expert
Watch as this scientist shines a light on a type of pollution that affects sea turtles.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert