Integrated Science 3   (#2002440)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:
  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).
Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)
  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Literacy Standards in Science
Secondary science courses include reading standards for literacy in science and technical subjects 6-12 and writing standards for literacy in history/social studies, science, and technical subjects 6-12. The courses also include speaking and listening standards. For a complete list of standards required for this course click on the blue tile labeled course standards. You may also download the complete course including all required standards and notes sections using the export function located at the top of this page.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

General Information

Course Number: 2002440
Course Path:
Abbreviated Title: INTEG SCI 3
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Attributes:
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 2
Course Status: Course Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Equally Rigorous Science

Educator Certifications

One of these educator certification options is required to teach this course.


Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Graphing Linear Functions Part 1: Table of Values:

Learn how to graph linear functions by creating a table of values based on the equation in this interactive tutorial.

This is part 1 of a series of tutorials on linear functions.

Type: Original Student Tutorial

Quadratic Function Part 2: Launches:

Learn about different formats of quadratic equations and their graphs with experiments involving launching and shooting of balls in this interactive tutorial.

This is part 2 of a two-part series: Click HERE to open part 1.

Type: Original Student Tutorial

Quadratic Functions Part 1: Ball Games:

Join us as we watch ball games and explore how the height of a ball bounce over time is represented by quadratic functions, which provides opportunities to interpret key features of the function in this interactive tutorial.

This is part 1 of a two-part series: Click HERE to open part 2.

Type: Original Student Tutorial

Yikes! Strikes! Severe Weather:

Learn to identify different types of severe weather and the conditions that contribute to the formation of severe weather in this interactive tutorial.

Type: Original Student Tutorial

Newton's Insight: Standing on the Shoulders of Giants:

Discover how Isaac Newton's background, talents, interests, and goals influenced his groundbreaking work in this interactive tutorial.

This is part 4 in a 4-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Movies Part 2: What’s the Spread?:

Follow Jake along as he relates box plots with other plots and identifies possible outliers in real-world data from surveys of moviegoers' ages in part 2 in this interactive tutorial.

This is part 2 of 2-part series, click HERE to view part 1.

Type: Original Student Tutorial

Movies Part 1: What's the Spread?:

Follow Jake as he displays real-world data by creating box plots showing the 5 number summary and compares the spread of the data from surveys of the ages of moviegoers in part 1 of this interactive tutorial.

This is part 1 of 2-part series, click HERE to view part 2.

Type: Original Student Tutorial

Exponential Functions Part 3: Decay:

Learn about exponential decay as you calculate the value of used cars by examining equations, graphs, and tables in this interactive tutorial.

Type: Original Student Tutorial

Linear Functions: Jobs:

Learn how to interpret key features of linear functions and translate between representations of linear functions through exploring jobs for teenagers in this interactive tutorial. 

Type: Original Student Tutorial

Exponential Functions Part 2: Growth:

Learn about exponential growth in the context of interest earned as money is put in a savings account by examining equations, graphs, and tables in this interactive tutorial.

Type: Original Student Tutorial

Exponential Functions Part 1:

Learn about exponential functions and how they are different from linear functions by examining real world situations, their graphs and their tables in this interactive tutorial.

Type: Original Student Tutorial

Turtles and Towns:

Explore the impacts on sea turtles, humans, and the economy when we live, work, and play at the beach with this interactive tutorial.

Type: Original Student Tutorial

How Viral Disease Spreads:

Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.

Type: Original Student Tutorial

Testing Scientific Claims:

Learn how to test scientific claims and judge competing hypotheses by understanding how they can be tested against one another in this interactive tutorial.

Type: Original Student Tutorial

Hidden Mutations:

Dive into genetic mutations and learn how they can alter the phenotypes of organisms.

Type: Original Student Tutorial

Structure and Function of Fungi: Asexual and Sexual Reproduction (2 of 3):

Learn about asexual and sexual reproduction of fungi in this interactive tutorial. This is Part 2 of 3 in this series on the Structure and Function of Fungi. 

Click  to open Part 1, Basic Characteristics and Structures

Click HERE to open Part 3, Nutrition and Mutualistic Relationships

Type: Original Student Tutorial

Biodiversity and Non-native Species:

See how non-native species can impact ecosystem biodiversity to create problems for native species in this interactive tutorial.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Conditions for Natural Selection:

Explore three conditions required for natural selection and see how these conditions lead to allele frequency shifts in a population. 

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Structure and Function of Fungi: Basic Characteristics and Structures (1 of 3):

Learn about the basic characteristics and structures of fungi in Part 1 of 3 in this series on the Structure and Function of Fungi.

Click  to open Part 2, Asexual and Sexual Reproduction

Click HERE to open Part 3, Nutrition and Mutualistic Relationships

Type: Original Student Tutorial

Structure and Function of Fungi: Nutrition and Mutualistic Relationships (3 of 3):

Learn about the nutrition and mutualistic relationships of fungi in this interactive tutorial. This is Part 3 of 3 in this series on the Structure and Function of Fungi. 

Click  to open Part 1, Basic Characteristics and Structures

Click HERE to open Part 2, Asexual and Sexual Reproduction

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

The Human Reproductive System, Part 1:

Explore the genetic advantage of sexual reproduction, describe the basic anatomy and physiology of both the male and female human reproductive systems, describe the process of human development leading up to birth, and identify major changes associated with each trimester of pregnancy.

This interactive tutorial is part 1 in a two-part series. Click here to 

Type: Original Student Tutorial

The Human Reproductive System (Part 2):

Explore the process of human development leading up to birth, and identify major changes associated with each trimester of pregnancy.

This interactive tutorial is part 2 in a two-part series. Click here to launch .

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Migration in the Kenyan Savannah:

Examine migration and factors affecting both population sizes and distributions of key species in the Kenyan savannah with this interactive tutorial. 

Type: Original Student Tutorial

Hallowed Words: Evaluating a Speaker's Effectiveness:

Learn how to evaluate a speaker's point of view, reasoning, and use of evidence. In this interactive tutorial, you'll examine Abraham Lincoln's "Gettysburg Address" and evaluate the effectiveness of his words by analyzing his use of reasoning and evidence. 

Type: Original Student Tutorial

Interactions among Organisms: Kenya:

Explore examples of mutualism, competition, and predation in the Kenyan savannah ecosystem. 

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Beyond Natural Selection: Mechanisms of Evolution:

Explore mechanisms of evolutionary change other than natural selection such as mutation, gene flow, and genetic drift in this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

A Study in Sustainability:

Learn how individual and societal choices affect sustainability and explore ways that you can reduce your impact on the environment with this interactive tutorial.

Type: Original Student Tutorial

The Mystery of Muscle Cell Metabolism:

Explore the mystery of muscle cell metabolism and how cells are able to meet the need for a constant supply of energy. In this interactive tutorial, you'll identify the basic structure of adenosine triphosphate (ATP), explain how ATP’s structure is related it its job in the cell, and connect this role to energy transfers in living things.

Type: Original Student Tutorial

Data and Frequencies:

Learn to define, calculate, and interpret marginal frequencies, joint frequencies, and conditional frequencies in the context of the data with this interactive tutorial.

Type: Original Student Tutorial

Enzymes are the Stuff of Life:

At any instant in your life, millions and millions of enzymes are hard at work in your body as well as all around you making your life easier!

By the end of this tutorial you should be able to describe how enzymes speed up most biochemical reactions as well as identify the various factors that affect enzyme activity like pH and temperature.

Type: Original Student Tutorial

Sustainability:

Learn the definition of "sustainability" and understand how our throw away consumer lifestyle has affected the environment in a negative way. In this interactive tutorial, you'll explore possible solutions to prevent further harm to the environment.

Type: Original Student Tutorial

Natural Selection:

Describe the conditions required for natural selection and tell how it can result in changes in species over time. In this interactive tutorial, follow Charles Darwin through a life of exploration, observation, and experimentation to see how he developed his ideas.

Type: Original Student Tutorial

Evolution: Examining the Evidence:

Learn how to identify explicit evidence and understand implicit meaning in a text.

You should be able to explain how different types of scientific evidence support the theory of evolution, including direct observation, fossils, DNA, biogeography, and comparative anatomy and embryology.

Type: Original Student Tutorial

Earliest Beginnings:

Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.

Type: Original Student Tutorial

Graphing Quadratic Functions:

Follow as we discover key features of a quadratic equation written in vertex form in this interactive tutorial.

Type: Original Student Tutorial

ATP: Fuel for Cells:

Explore how cells use ATP as an energy source for cellular activities in this interactive tutorial.

Type: Original Student Tutorial

Observation vs. Inference:

Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.

Type: Original Student Tutorial

Cool Case Files:

Learn that a scientific theory is the culmination of many experiments and supplies the most powerful explanation that scientists have to offer with this interactive tutorial.

Type: Original Student Tutorial

Cancer: Mutated Cells Gone Wild!:

Explore the relationship between mutations, the cell cycle, and uncontrolled cell growth which may result in cancer with this interactive tutorial.

Type: Original Student Tutorial

Population Interactions:

Explore population interactions and how those interactions can affect population size in this interactive tutorial. You'll also learn about competition, predation and symbiosis.

Type: Original Student Tutorial

Defining Science:

Learn how to define what science is and what it is not. In this interactive tutorial, you will identify why certain ways of exploring the universe can and cannot be considered scientific practices.

Type: Original Student Tutorial

Water and Life:

Learn how the chemical properties of water relate to its physical properties and make it essential for life with this interactive tutorial.

Type: Original Student Tutorial

Classification of Living Organisms:

Explore the characteristics of domains and kingdoms used to classify living organisms with this interactive tutorial. You also will learn more about the reasons behind how and why this classification is done.

Type: Original Student Tutorial

Question Quest:

Learn to distinguish between questions that can be answered by science and questions that science cannot answer. This interactive tutorial will help you distinguish between science and other ways of knowing, including art, religion, and philosophy.

Type: Original Student Tutorial

Impact of Biotechnology:

Learn how to identify and define types of biotechnology and consider the impacts of biotechnologies on the individual, society and the environment in this interactive tutorial.

Type: Original Student Tutorial

Climbing Around the Hominin Family Tree:

Learn to identify basic trends in the evolutionary history of humans, including walking upright, brain size, jaw size, and tool use in "Climbing Around the Hominin Family Tree" online tutorial.

Type: Original Student Tutorial

Chemistry With a Conscience:

Explore green chemistry and what it means to be benign by design in this interactive tutorial.

Type: Original Student Tutorial

Educational Games

Shoot an Electron:


This interesting game is to hit the target located opposite a electron gun. The electron gun will fire an electron. This electron must not hit any walls or obstacles during the attempt. The user may direct the electron along a path by placing stationary positive and negative charges at various locations. This game will help support learning about the concept of the electric field, which is created when electrons repel other electrons.

Type: Educational Game

The Control of the Cell Cycle:

The Control of the Cell Cycle educational game is based on the 2001 Nobel Prize in Physiology or Medicine, which was awarded for discoveries concerning the control of the cell cycle.

Type: Educational Game

EvoDots - Software for Evolutionary Analysis:

The software application, which allows the students to simulate natural selection in a population of dots, goes along with a tutorial which is also at this site.

Type: Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game

Educational Software / Tool

Two Way Frequency Excel Spreadsheet:

This Excel spreadsheet allows the educator to input data into a two way frequency table and have the resulting relative frequency charts calculated automatically on the second sheet. This resource will assist the educator in checking student calculations on student-generated data quickly and easily.

Steps to add data: All data is input on the first spreadsheet; all tables are calculated on the second spreadsheet

  1. Modify column and row headings to match your data.
  2. Input joint frequency data.
  3. Click the second tab at the bottom of the window to see the automatic calculations.

Type: Educational Software / Tool

Lesson Plans

The Surprising World of Complex Systems:

This lesson introduces students to complex systems and to basic concepts from the field of system dynamics that lie at the heart of systems thinking. These concepts include stocks and flows, feedback loops, unintended consequences, and the basic principle that the behavior of complex systems can best be understood by looking at the system as a whole, and specifically by analyzing the system’s underlying structure. The lesson introduces these topics through an immersion in (and a role-play simulation of) the dynamics of urban recycling systems, many of which have been thrown into crisis in the past two years. Through this current-affairs example of complex systems in crisis, we identify some key structural features that help to explain how these systems behave over time. We also discover how well-intentioned action can cause negative unintended consequences when we try to intervene in a complex system without understanding how it operates.

Type: Lesson Plan

CO2: Find Out What It Means to You:

This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate. 

Type: Lesson Plan

Meet the Family: Investigating Primate Relationships:

In this lesson students will see the different types of evidence scientists use to understand evolutionary relationships among organisms. They will first practice by using shared physical characteristics to predict relationships among members of the cat family and then use this approach to predict primate relationships. They will compare their predictions to evidence provided by analyzing amino acid sequences and build a phylogenetic tree based on these sequences. Finally, they will look at the tree in the context of time in order to see divergence times.

Type: Lesson Plan

Perspectives Video: Experts

Jumping Robots and Quadratics:

<p>Jump to it and learn more about how quadratic equations are&nbsp;used in robot navigation problem solving!</p>

Type: Perspectives Video: Expert

Pendulums and Energy Transformations:

Explore how pendulums show the transformation of gravitational potential energy to kinetic energy and back with Dr. Simon Capstick in this engaging video. Don't miss his broken-nose defying test of the physics with a bowling ball pendulum.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Recognizing Redox Reactions:

Chemistry is pretty sweet. Also tasty if you understand oxidation and reduction reactions, but it may take a little MacGyvering.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Severe Weather Formation:

In a fog about weather patterns? This climatologist will demystify the topic for you.

Type: Perspectives Video: Expert

El Niño and La Niña:

Learn how the ocean pressures the climate into changing.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Biochemistry and Medicine:

Advances in "big data" are leading to rapid developments in personalized medicine. Learn more!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Electromagnetic Robot Muscles:

Dr. Oates uses engineering practices to design artificial muscles that react to electrostatic fields.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations and Genetic Diversity:

Mutations don't just happen to comic book heroes and villains. Learn more about this natural biological phenomenon!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations, the Cell Cycle, and Cancer:

Sometimes the cell cycle gets derailed a bit, which can lead to the development of tumors. Learn more about mutations!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Measuring Biodiversity to Evaluate Human Impact:

Humans impact the environment in a number of ways. Learn more about how we interact with nature!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Light Spectrum for Growing Plants:

Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Environment and Natural Selection:

This video is a natural selection for learning about evolution.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Methods of Evolution in Animal Populations Big and Small:

Interested in how evolution happens? Drift into this video and go with the flow.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Fingerprinting:

Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protect our Fisheries from Invasive Species:

Lionfish and other species are roaring past our native populations. Learn more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Sea Turtle Conservation:

Watch as this scientist shines a light on a type of pollution that affects sea turtles.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Viticulture and Biotechnology:

A viticulture scientist explains grape expectations for medicine and society.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Ethanol Fuel:

Why can't you put Ethanol fuel in a boat motor?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Unit Conversions:

<p>Get fired up as you learn more about ceramic glaze recipes and mathematical units.</p>

Type: Perspectives Video: Professional/Enthusiast

Forces and Power in Flint Knapping:

Sharpen your knowledge by understanding the forces used to make stone tools.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Seeing into Atoms with Electromagnetic Energy:

If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Making Charcoal:

Get sooted up and join a collier as he discusses charcoal production at historic Mission San Luis.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using X-rays in Archeology:

An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Plan Your Archaeological Excavations with Radar Waves! :

Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Estimating Oil Seep Production by Bubble Volume:

<p>You'll need to bring your computer skills and math knowledge to estimate oil volume and rate as it seeps from the ocean floor. Dive in!</p>

Type: Perspectives Video: Professional/Enthusiast

Optical Spectroscopy: Using Electromagnetic Waves to Detect Fires:

<p>Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.</p>

Type: Perspectives Video: Professional/Enthusiast

Oil Seeps in the Gulf of Mexico:

Immerse yourself in deep-sea geology to learn more about naturally-occurring oil seeps.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Managing Waste Disposal with Landfills and Recycling:

Landfills have a come a long way! Explore modern techniques for managing our environmental impact through responsible waste disposal.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Shaping Pottery with Angular Momentum:

Factors to consider when making pottery on the wheel are discussed, but not in a way that would make your head spin.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshow

What Killed the Dinosaurs?:

It is often difficult, sometimes impossible, to get a definitive answer to some of life's most enduring questions. Scientific processes provide alternative explanations for a wide variety of phenomena by piecing together all the available information. This interactive activity on the Evolution website explores four possible hypotheses to explain what caused the extinction of the dinosaurs 65 million years ago, inviting the viewer to consider the evidence and come to their own decision.

Type: Presentation/Slideshow

Problem-Solving Tasks

Speed Trap:

The purpose of this task is to allow students to demonstrate an ability to construct boxplots and to use boxplots as the basis for comparing distributions.

Type: Problem-Solving Task

Musical Preferences:

This problem solving task asks students to make deductions about the kind of music students enjoy by examining data in a two-way table.

Type: Problem-Solving Task

SAT Scores:

This problem solving task challenges students to answer probability questions about SAT scores, using distribution and mean to solve the problem.

Type: Problem-Solving Task

Haircut Costs:

This problem could be used as an introductory lesson to introduce group comparisons and to engage students in a question they may find amusing and interesting.

Type: Problem-Solving Task

Should We Send Out a Certificate?:

The purpose of this task is to have students complete normal distribution calculations and to use properties of normal distributions to draw conclusions.

Type: Problem-Solving Task

Do You Fit in This Car?:

This task requires students to use the normal distribution as a model for a data distribution. Students must use given means and standard deviations to approximate population percentages.

Type: Problem-Solving Task

Random Walk III:

The task provides a context to calculate discrete probabilities and represent them on a bar graph.

Type: Problem-Solving Task

As the Wheel Turns:

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task

Finding Parabolas through Two Points:

This problem-solving task challenges students to find all quadratic functions described by given equation and coordinates, and describe how the graphs of those functions are related to one another.

Type: Problem-Solving Task

Warming and Cooling:

This task is meant to be a straight-forward assessment task of graph reading and interpreting skills. This task helps reinforce the idea that when a variable represents time, t = 0 is chosen as an arbitrary point in time and positive times are interpreted as times that happen after that.

Type: Problem-Solving Task

Throwing Baseballs:

This task could be used for assessment or for practice. It allows students to compare characteristics of two quadratic functions that are each represented differently, one as the graph of a quadratic function and one written out algebraically. Specifically, students are asked to determine which function has the greatest maximum and the greatest non-negative root.

Type: Problem-Solving Task

Average Cost:

This task asks students to find the average, write an equation, find the domain, and create a graph of the cost of producing DVDs.

Type: Problem-Solving Task

Weed Killer:

The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.

Type: Problem-Solving Task

Telling a Story with Graphs:

In this task students are given graphs of quantities related to weather. The purpose of the task is to show that graphs are more than a collection of coordinate points; they can tell a story about the variables that are involved, and together they can paint a very complete picture of a situation, in this case the weather. Features in one graph, like maximum and minimum points, correspond to features in another graph. For example, on a rainy day, the solar radiation is very low, and the cumulative rainfall graph is increasing with a large slope.

Type: Problem-Solving Task

Logistic Growth Model, Explicit Version:

This problem introduces a logistic growth model in the concrete settings of estimating the population of the U.S. The model gives a surprisingly accurate estimate and this should be contrasted with linear and exponential models.

Type: Problem-Solving Task

Logistic Growth Model, Abstract Version:

This task is for instructional purposes only and students should already be familiar with some specific examples of logistic growth functions. The goal of this task is to have students appreciate how different constants influence the shape of a graph.

Type: Problem-Solving Task

How Is the Weather?:

This task can be used as a quick assessment to see if students can make sense of a graph in the context of a real world situation. Students also have to pay attention to the scale on the vertical axis to find the correct match. The first and third graphs look very similar at first glance, but the function values are very different since the scales on the vertical axes are very different. The task could also be used to generate a group discussion on interpreting functions given by graphs.

Type: Problem-Solving Task

Dinosaur Bones:

The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.

Type: Problem-Solving Task

Bus and Car:

This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.

At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating I:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating II:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Fuel Efficiency:

The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.

Type: Problem-Solving Task

How Much Is a Penny Worth?:

This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.

Type: Problem-Solving Task

Runner's World:

Students are asked to use units to determine if the given statement is valid.

Type: Problem-Solving Task

Harvesting the Fields:

This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.

Type: Problem-Solving Task

Sum of Even and Odd:

Students explore and manipulate expressions based on the following statement:

A function f defined for -a < x="">< a="" is="" even="" if="" f(-x)="f(x)" and="" is="" odd="" if="" f(-x)="-f(x)" when="" -a="">< x="">< a.="" in="" this="" task="" we="" assume="" f="" is="" defined="" on="" such="" an="" interval,="" which="" might="" be="" the="" full="" real="" line="" (i.e.,="" a="">

Type: Problem-Solving Task

Graphs of Quadratic Functions:

Students compare graphs of different quadratic functions, then produce equations of their own to satisfy given conditions.

This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is. It is effective after students have graphed parabolas in vertex form (y=a(x–h)2+k), but have not yet explored graphing other forms.

Type: Problem-Solving Task

Traffic Jam:

This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"

This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Felicia's Drive:

This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Type: Problem-Solving Task

Graphs of Power Functions:

This task requires students to recognize the graphs of different (positive) powers of x.

Type: Problem-Solving Task

The Canoe Trip, Variation 2:

The primary purpose of this task is to lead students to a numerical and graphical understanding of the behavior of a rational function near a vertical asymptote, in terms of the expression defining the function.

Type: Problem-Solving Task

The Canoe Trip, Variation 1:

The purpose of this task is to give students practice constructing functions that represent a quantity of interest in a context, and then interpreting features of the function in the light of the context. It can be used as either an assessment or a teaching task.

Type: Problem-Solving Task

Calories in a Sports Drink:

This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.

Type: Problem-Solving Task

Text Resources

Magnetism:

This site presents the basic ideas of magnetism and applies these ideas to the earth's magnetic field. There are several useful diagrams and pictures interspersed throughout this lesson, as well as links to more detailed subjects. This is an introduction to a larger collection on exploring the Earth's magnetosphere. A Spanish translation is available.

Type: Text Resource

What you Need to Know about Energy:

This site from the National Academy of Sciences presents uses, sources, costs, and efficiency of energy.

Type: Text Resource

Tutorials

Graphs and Solutions of Functions in Quadratic Equations:

You will learn how the parent function for a quadratic function is affected when f(x) = x2.

Type: Tutorial

Graphing Quadractic Functions in Vertex Form:

This tutorial will help the students to identify the vertex of a parabola from the equation, and then graph the parabola.

Type: Tutorial

Graphing Quadratic Equations:

This tutorial helps the learners to graph the equation of a quadratic function using the coordinates of the vertex of a parabola and its x- intercepts.

Type: Tutorial

Graphing Exponential Equations:

This tutorial will help you to learn about exponential functions by graphing various equations representing exponential growth and decay.

Type: Tutorial

Oxidation and Reduction Review From Biological Point-of-View:

This Khan Academy video explains oxidation and reduction reactions from a biological point of view.

Type: Tutorial

Taxonomy and the Tree of Life:

This Khan Academy video discusses the science of taxonomy and where humans fit into the tree of life.

Type: Tutorial

Species:

This Khan Academy video explains the definition of species and provides examples of animals that belong to the same species.

Type: Tutorial

Embryonic Stem Cells:

This Khan Academy video describes what happens to a zygote as it becomes an embyro. It further explains what a stem cell is and discusses why there are questions concerning the use of stem cells.

Type: Tutorial

Variation in a Species:

This Khan Academy video explains how variation can be introduced into a species and the importance of sexual reproduction in this process.

Type: Tutorial

Natural Selection and the Owl Butterfly:

This Khan Academy tutorial explains how the owl butterfly might have evolved the spots on its wings through natural selection.

Type: Tutorial

ATP: Adenosine Triphosphate:

This Khan Academy video explains how the molecule ATP stores the energy needed for biological systems within organisms.

Type: Tutorial

Viruses:

This introduction to viruses by the Khan Academy addresses the question: Are viruses alive? How viruses enter cells and replicate is discussed in detail.

Type: Tutorial

Bacteria:

This video from the Khan Academy introduces the symbiotic relationship between the many bacteria that live inside the human body. The basics of bacteria structure, reproduction, and bacterial infections are discussed.

Type: Tutorial

Cancer:

This Khan Academy video discusses the basics of cancer. The relationship between mutation, the cell cycle and uncontolled cell growth is explained.

Type: Tutorial

The Role of Vitamins in Human Nutrition:

This tutorial will help you to understand the role that vitamins play in human nutrition. Vitamins interact with enzymes to allow them to function more effectively. Though vitamins are not consumed in metabolism, they are vital for the process of metabolism to occur.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Maturation of the Follicle and Oocyte:

This tutorial will help you to understand the function of the follicle. Each follicle is a single egg cell surrounded by several layers of follicle cells. An ovary consists of many follicles. The follicle cells protect and nourish the egg prior to its release into the oviducts during ovulation.

Type: Tutorial

Rock 'n Roll Weather:

This resource is a basic introduction to the types of severe weather. Students will learn about the formation of tornadoes, lightning, floods, and hurricanes. Images of each weather system also accompany each section.

Type: Tutorial

Conserving Our Spectacular, Vulnerable Coral Reefs :

How do coral reef conservationists balance the environmental needs of the reefs with locals who need the reefs to survive? Joshua Drew draws on the islands of Fiji and their exemplary system of protection, called "connectivity", which also keep the needs of fishermen in mind.

Type: Tutorial

How Polarity Makes Water Behave Strangely:

Water is both essential and unique. Many of its particular qualities stem from the fact that it consists of two hydrogen atoms and one oxygen, therefore creating an unequal sharing of electrons. From fish in frozen lakes to ice floating on water, Christina Kleinberg describes the effects of polarity.

Type: Tutorial

How Does Cancer Spread Through the Body?:

This TED-ED original lesson explains the three common routes of metastasis. Cancer usually begins with one tumor in a specific area of the body. But if the tumor is not removed, cancer has the ability to spread to nearby organs as well as places far away from the origin, like the brain. How does cancer move to these new areas and why are some organs more likely to get infected than others? Ivan Seah Yu Jun explains the three common routes of metastasis.

Type: Tutorial

What Causes Antibiotic Resistance?:

This short video describes the process of antibiotic resistance. Right now, you are inhabited by trillions of micro organisms. Many of these bacteria are harmless (or even helpful!), but there are a few strains of ‘super bacteria' that are pretty nasty -- and they're growing resistant to our antibiotics. Why is this happening? Kevin Wu details the evolution of this problem that presents a big challenge for the future of medicine.

Type: Tutorial

The Case of the Vanishing Honeybees:

In the past decade, the US honeybee population has been decreasing at an alarming and unprecedented rate. While this is obviously bad news for honeypots everywhere, bees also help feed us in a bigger way -- by pollinating our nation's crops. Emma Bryce investigates potential causes for this widespread colony collapse disorder.

Type: Tutorial

Activation Energy-Kickstarting Chemical Reactions:

Chemical reactions are constantly happening in your body -- even at this very moment. But what catalyzes these important reactions? This short video explains how enzymes assist the process, while providing a light-hearted way to remember how activation energy works.

Type: Tutorial

How Do Cancer Cells Behave Differently From Healthy Ones?:

How do cancer cells grow? How does chemotherapy fight cancer (and cause negative side effects)? The answers lie in cell division. George Zaidan explains how rapid cell division is cancer's "strength" -- and also its weakness.

Type: Tutorial

Interactive Carbon Lab:

This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.

Type: Tutorial

Malaria: Human Host:


When a malaria-carrying mosquito bites a human host, the malaria parasite enters the bloodstream, multiplies in the liver cells, and is then released back into the bloodstream, where it infects and destroys red blood cells. This animation will help you to understand the process of malarial infection.

Type: Tutorial

Glycolysis:

This tutorial will help the learners understand glycolysis, which is the process of enzymes breaking down glucose to release energy.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Oxidation and Reduction in Cellular Respiration:

This video explains oxidation and reduction in cellular respiration.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Birds of Paradise: Competition among birds:

This video shows mating displays and courtship behavior of Birds of Paradise. These birds display bright colors and visually stunning behaviors during courtship. 

Type: Video/Audio/Animation

Marine fossils in the Arctic landscape:

In this video, research is presented describing scientific studies of marine fossils found in Arctic regions.

Type: Video/Audio/Animation

Development of the Human Embryonic Brain:


This video presentation shows how the fetal brain grows during pregnancy, both in terms of its size and the number of neurons.

Type: Video/Audio/Animation

Mechanisms of Evolution:

This TED Ed video explains the mechanisms of evolutionary change: change in population size, sexual selection, mutation, gene flow, and natural selection.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Light is a Particle:

This video contains a demo that can be performed to show that light consists of particles
It also uses Lasers with different wavelengths

Type: Video/Audio/Animation

Graphing Lines 1:

Khan Academy video tutorial on graphing linear equations: "Algebra: Graphing Lines 1"

Type: Video/Audio/Animation

Science of the Olympic Winter Games - Aerial Physics:

A 4-minute video in which an Olympic freestyle skier and a physicist discuss the physics behind freestyle skiing.

Type: Video/Audio/Animation

Towers in the Tempest:

'Towers in the Tempest' is a 4.5 minute narrated animation that explains recent scientific insights into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower'. For the first time, research meteorologists have run complex simulations using a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers'. The science of 'hot towers' is described using: observed hurricane data from a satellite, descriptive illustrations, and volumetric visualizations of simulation data.

Type: Video/Audio/Animation

27 Storms: Arlene to Zeta:

This video from NASA presents the 2005 hurricane season with actual data that NASA and NOAA satellites measured. Sea surface temperatures, clouds, storm tracks, and hurricane category labels are shown as the hurricane season progresses.

Type: Video/Audio/Animation

How do Hurricanes Form - NASA Spaceplace:

This site describes how hurricanes (tropical cyclones) form. The site includes text, diagrams, and satellite images in a movie.

Type: Video/Audio/Animation

Solar Wind's Effect on Earth:

The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.

Type: Video/Audio/Animation

Evolving Ideas: Isn't evolution just a theory?:

This video examines the vocabulary essential for understanding the nature of science and evolution and illustrates how evolution is a powerful, well-supported scientific explanation for the relatedness of all life. A clear definition and description of scientific theory is given.

Type: Video/Audio/Animation

Cancer:

An introduction to what cancer is and how it is the by-product of broken DNA replication.

Type: Video/Audio/Animation

Mount St. Helens: Rising From the Ashes :

In this NSF video and reading selection evolutionary biologist and ecologist John Bishop documents the return of living things to Mount St. Helens after the largest landslide in recorded history. This is a rare opportunity for scientists to get to study a devastated area and how it comes back from scratch in such detail.

Type: Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Pocket Mouse Evolution:

This simulation shows the spread of a favorable mutation through a population of pocket mice. Even a small selective advantage can lead to a rapid evolution of the population.

Type: Video/Audio/Animation

Variation Is Essential: How Does Variation Within a Population Affect the Survival of a Species?:

This is a lesson about phenotypical variation within populations and how these differences are essential for biological evolution. Students will use a model organism (in this case, kidney beans) to explore variation patterns and subsequently connect these differences to artificial & natural selection. The NGSS’ CrossCutting Concepts and Science & Engineering Practices are embedded throughout the lesson.

The main learning objectives are:

  • Using a model (kidney beans) to explore the natural variations within a population.
  • Measuring differences between individuals in a population (population of beans).
  • Describing how genetic/phenotypic variation is a key part of biological evolution because it is a prerequisite for natural selection.
  • Demonstrating in which ways genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.

The NGSS Performance Expectations covered are HS-LS4-2. & HS-LS4-4.

Type: Video/Audio/Animation

Virtual Manipulatives

Black body Spectrum:

In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.

Type: Virtual Manipulative

Collision lab:

Learn more about collisions with the use of a virtual air hockey table. Investigate simple and complex collisions in one and two dimensions.Experiment with the number of discs, masses and initial conditions. Vary the elasticity and see how the total momentum and kinetic energy changes during collisions.

Some of the sample learning goals can be:

  • Draw "Before and After" pictures of collisions.
  • Construct momentum vector representations of "Before and After" collisions.
  • Apply law of conservation of momentum to solve problems with collisions.
  • Explain why energy is not conserved and varies in some collisions.
  • Determine the change in mechanical energy in collisions of varying "elasticity".
  • What does "elasticity" mean?

Type: Virtual Manipulative

Equilibrium Constant:


Chemical equilibrium is the condition which occurs when the concentration of reactants and products participating in a chemical reaction exhibit no net change over time. This simulation shows a model of an equilibrium system for a uni-molecular reaction. The value for the equilibrium constant, K, can be set in the simulation, to observe the reaction reaching the constant.

Type: Virtual Manipulative

Slope Slider:

In this activity, students adjust slider bars which adjust the coefficients and constants of a linear function and examine how their changes affect the graph. The equation of the line can be in slope-intercept form or standard form. This activity allows students to explore linear equations, slopes, and y-intercepts and their visual representation on a graph. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Graphing Equations Using Intercepts:

This resource provides linear functions in standard form and asks the user to graph it using intercepts on an interactive graph below the problem. Immediate feedback is provided, and for incorrect responses, each step of the solution is thoroughly modeled.

Type: Virtual Manipulative

Split Brain Experiments:

The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.

Type: Virtual Manipulative

Reversing Velocity of a charged particle with magnetic field:

This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed.

Type: Virtual Manipulative

Photoelectric Effect:


This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:

  • Visualize and describe the photoelectric effect experiment.
  • Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
  • Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
  • Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.

Type: Virtual Manipulative

Geometric Optics:


This virtual manipulative will allow the students to understand how does a lens form an image. Students can see how light rays are refracted by a lens. Students can recognize that the image changes when they adjust the focal length of the lens, move the object, move the lens, or move the screen.
Some of the sample learning goals can be:

  • Explain how an image is formed by a converging lens using ray diagrams.
  • How changing the lens (radius, index, and diameter) effects where the image appears and ho it looks it terms of magnification, brightness and inversion.

Type: Virtual Manipulative

Neon Lights and Other Discharge Lamps:

This virtual manipulative will allow you to produce light by bombarding atoms with electrons. You can also visualize how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Other areas to investigate:

  • Provide a basic design for a discharge lamp and explain the function of the different components.
  • Explain the basic structure of an atom and relate it to the color of light produced by discharge lamps.
  • Explain why discharge lamps emit only certain colors.
  • Design a discharge lamp to emit any desired spectrum of colors.

Type: Virtual Manipulative

Reversible Reactions:

This virtual manipulative will allow you to watch a reaction proceed over time. You can vary temperature, barrier height, and potential energies to note how total energy affects reaction rate. You will be able to record concentrations and time in order to extract rate coefficients.
Additionally you can:

  • Describe on a microscopic level, with illustrations, how reactions occur.
  • Describe how the motion of reactant molecules (speed and direction) contributes to a reaction happening.
  • Predict how changes in temperature, or use of a catalyst will affect the rate of a reaction.
  • On the potential energy curve, identify the activation energy for forward and reverse reactions and the energy change between reactants and products.
  • Form a graph of concentrations as a function of time, students should be able to identify when a system has reached equilibrium.
  • Calculate a rate coefficient from concentration and time data.
  • Determine how a rate coefficient changes with temperature.
  • Compare graphs of concentration versus time to determine which represents the fastest or slowest rate.

Type: Virtual Manipulative

Reactions Rates:

This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.

Areas to Explore:

  • Explain why and how a pinball shooter can be used to help understand ideas about reactions.
  • Describe on a microscopic level what contributes to a successful reaction.
  • Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
  • Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
  • Draw a potential energy diagram from the energies of reactants and products and activation energy.
  • Predict how raising or lowering the temperature will affect a system in the equilibrium.

Type: Virtual Manipulative

Generator:


This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil.
Some of the sample learning goals can be:

  • Identify equipment and conditions that produce induction.
  • Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
  • Predict how the current will change when the conditions are varied.
  • Explain practical applications of Faraday's Law.
  • Explain what is the cause of the induction.

Type: Virtual Manipulative

Balloons and Buoyancy:

This simulation will provide an insight into the properties of gases. You can explore the more advanced features which enables you to explore three physical situations: Hot Air Balloon (rigid open container with its own heat source), Rigid Sphere (rigid closed container), and Helium Balloon (elastic closed container).

Through this activity you can:

  • Determine what causes the balloon, rigid sphere, and helium balloon to rise up or fall down in the box.
  • Predict how changing a variable among Pressure, Volume, Temperature and number influences the motion of the balloons.

Type: Virtual Manipulative

Graphing Lines:

Allows students access to a Cartesian Coordinate System where linear equations can be graphed and details of the line and the slope can be observed.

Type: Virtual Manipulative

Beta Decay:

This is a virtual manipulative to understand beta decay. In the Beta decay process, a neutron decays into a proton and an electron (beta radiation). The process also requires the emission of a neutrino to maintain momentum and energy balance. Beta decay allows the atom to obtain the optimal ratio of protons and neutrons.

Type: Virtual Manipulative

Alpha decay:

This virtual manipulative will help you to understand the process of alpha decay. Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Type: Virtual Manipulative

Simplified MRI:

Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.

In this simulation you can:

  • Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
  • Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
  • Describe how to put these two ideas together to detect where there is a higher density of spins.

Type: Virtual Manipulative

Molecules and Light:

This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.

Areas to explore:

  • How light interacts with molecules in our atmosphere.
  • Identify that absorption of light depends on the molecule and the type of light.
  • Relate the energy of the light to the resulting motion.
  • Identify that energy increases from microwave to ultraviolet.
  • Predict the motion of a molecule based on the type of light it absorbs.
  • Identify how the structure of a molecule affects how it interacts with light.

Type: Virtual Manipulative

Beer's Law Lab:

This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:

  • Describe the relationships between volume and amount of solute to solution concentration.
  • Explain qualitatively the relationship between solution color and concentration.
  • Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
  • Calculate the concentration of solutions in units of molarity (mol/L).
  • Design a procedure for creating a solution of a given concentration.
  • Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
  • Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
  • Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
  • Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?

Type: Virtual Manipulative

Pendulum Lab:


Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. Students can vary friction and the strength of gravity.

  • Design experiments to describe how variables affect the motion of a pendulum
  • Use a photogate timer to determine quantitatively how the period of a pendulum depends on the variables you described
  • Determine the gravitational acceleration of planet X
  • Explain the conservation of Mechanical energy concept using kinetic energy and gravitational potential energy
  • Describe energy chart from position or selected speeds

Type: Virtual Manipulative

Faraday's Law:

Light a bulb by waving a magnet. This demonstration of Faraday's law will help you to:
  • Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
  • Explain the difference between moving the magnet through the coil from the right side versus the left side.
  • Explain the difference between moving magnet through the big coil versus the smaller coil.

Type: Virtual Manipulative

Box Plot:

In this activity, students use preset data or enter in their own data to be represented in a box plot. This activity allows students to explore single as well as side-by-side box plots of different data. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Virtual Manipulative

Data Flyer:

Using this virtual manipulative, students are able to graph a function and a set of ordered pairs on the same coordinate plane. The constants, coefficients, and exponents can be adjusted using slider bars, so the student can explore the affect on the graph as the function parameters are changed. Students can also examine the deviation of the data from the function. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Normal Distribution Interactive Activity:

With this online tool, students adjust the standard deviation and sample size of a normal distribution to see how it will affect a histogram of that distribution. This activity allows students to explore the effect of changing the sample size in an experiment and the effect of changing the standard deviation of a normal distribution. Tabs at the top of the page provide access to supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Function Flyer:

In this online tool, students input a function to create a graph where the constants, coefficients, and exponents can be adjusted by slider bars. This tool allows students to explore graphs of functions and how adjusting the numbers in the function affect the graph. Using tabs at the top of the page you can also access supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Advanced Data Grapher:

This is an online graphing utility that can be used to create box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots.

Type: Virtual Manipulative

Sound:

The students will see and hear the effects of changing the frequency and/or amplitude of a sound wave. This animation may also be used to demonstrate the Doppler effect, reflection and interference of sound waves.

Type: Virtual Manipulative

Natural Selection:

Students will explore natural selection by controlling the environment and causing mutations in bunnies. This will demonstrate how natural selection works in nature. They will have the opportunity to throw in different variables to see what will make their species of rabbit survive.

Type: Virtual Manipulative

Curve Fitting:

With a mouse, students will drag data points (with their error bars) and watch the best-fit polynomial curve form instantly. Students can choose the type of fit: linear, quadratic, cubic, or quartic. Best fit or adjustable fit can be displayed.

Type: Virtual Manipulative

Equation Grapher:

This interactive simulation investigates graphing linear and quadratic equations. Users are given the ability to define and change the coefficients and constants in order to observe resulting changes in the graph(s).

Type: Virtual Manipulative

Nuclear Fission:

Complete this virtual manipulative to gain a better understanding of nuclear fission. Study the basic principles behind chain reactions and a nuclear reactor.

Type: Virtual Manipulative

Potential/Kinetic Energy Simulation:

Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.

Type: Virtual Manipulative

Histogram Tool:

This virtual manipulative histogram tool can aid in analyzing the distribution of a dataset. It has 6 preset datasets and a function to add your own data for analysis.

Type: Virtual Manipulative

PhET Gas Properties:

This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Type: Virtual Manipulative

Multi Bar Graph:

This activity allows the user to graph data sets in multiple bar graphs. The color, thickness, and scale of the graph are adjustable which may produce graphs that are misleading. Users may input their own data, or use or alter pre-made data sets. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Histogram:

In this activity, students can create and view a histogram using existing data sets or original data entered. Students can adjust the interval size using a slider bar, and they can also adjust the other scales on the graph. This activity allows students to explore histograms as a way to represent data as well as the concepts of mean, standard deviation, and scale. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.