A. Motion can be measured and described qualitatively and quantitatively. Net forces create a change in motion. When objects travel at speeds comparable to the speed of light, Einstein's special theory of relativity applies.
B. Momentum is conserved under well-defined conditions. A change in momentum occurs when a net force is applied to an object over a time interval.
C. The Law of Universal Gravitation states that gravitational forces act on all objects irrespective of their size and position.
D. Gases consist of great numbers of molecules moving in all directions. The behavior of gases can be modeled by the kinetic molecular theory.
E. Chemical reaction rates change with conditions under which they occur. Chemical equilibrium is a dynamic state in which forward and reverse processes occur at the same rates.
Related Benchmarks
Related Access Points
Independent
Supported
Participatory
Related Resources
Lesson Plans
Original Student Tutorials
Perspectives Video: Experts
Perspectives Video: Professional/Enthusiasts
Perspectives Video: Teaching Ideas
Project
Student Center Activity
Teaching Ideas
Text Resources
Tutorials
Unit/Lesson Sequence
Video/Audio/Animations
Virtual Manipulatives
Student Resources
Original Student Tutorials
Learn to calculate the gravitational force on an object or its acceleration due to gravity using Newton's law of universal gravitation in this interactive science tutorial.
This is part 2 in a two-part series. Click HERE to open Part 1.
Type: Original Student Tutorial
Follow Isaac Newton's journey from watching the apple fall to explaining the motion of the Moon by deriving the law of universal gravitation in this interactive science tutorial.
Type: Original Student Tutorial
Learn about Newton's third law of motion on the basketball court in this interactive tutorial.
This is part 3 in a 4-part series. Click below to explore the other tutorials in the series.
- Part 1: Discovering Newton's First Law of Motion: On the Soccer Pitch
- Part 2: Discovering Newton’s Second Law of Motion: On the Softball Diamond
- Part 4: Newton’s Insight: Standing on the Shoulders of Giants
Type: Original Student Tutorial
Learn about Newton's second law of motion on the softball diamond with this interactive tutorial.
This is part 2 in a 4-part series. Click below to explore the other tutorials in the series.
- Part 1: Discovering Newton’s First Law of Motion: On the Soccer Pitch
- Part 3: Discovering Newton’s Third Law of Motion: On the Basketball Court
- Part 4: Newton’s Insight: Standing on the Shoulders of Giants
Type: Original Student Tutorial
Take to the soccer pitch to learn about Newton's first law of motion in this interactive tutorial.
This part 1 in a 4-part series. Click below to explore the other tutorials in the series.
Part 2: Discovering Newton’s Second Law of Motion: On the Softball Diamond (Coming soon)
Part 3: Discovering Newton’s Third Law of Motion: On the Basketball Court (Coming soon)
Part 4: Newton’s Insight: Standing on the Shoulders of Giants (Coming soon)
Type: Original Student Tutorial
Lesson Plans
This lesson's primary focus is to introduce high school students to the concept of Elasticity, which is one of the fundamental concepts in the understanding of the physics of deformation in solids. The main learning objectives are: (1) To understand the essential concept of Elasticity and be able to distinguish simple solids objects based on degree and extent of their elastic properties; (2) To appreciate the utility of the elastic force vs. deformation curve through experiments; (3) To be aware of potential sources of error present in such experiments and identify corrective measures; and (4) To appreciate the relevance of Elasticity in practical applications.
Type: Lesson Plan
The goal of this lesson is to explain how sailboats work by exploring basic physics principles. At the end of this lesson, students will be able to identify the forces acting on a sailboat and explain how the combination of these forces results in the forward motion of a sailboat. Students should be familiar with vectors and be able to use them to represent forces and moments, and also should be familiar with using free body diagrams to represent forces and moments. The classroom activity challenges are centered around small-group discussions based on the questions posed before each break. Free body diagrams, or another conceptual representation of his or her answer, should support each student’s solution to the questions posed in the video.
Type: Lesson Plan
This lesson focuses on two elements: understanding Newton’s laws of motion, and how to use Newton’s laws to create force diagrams. This lesson also demonstrates how to incorporate requirements of the Next Generation Science Standards (NGSS) into a physics lesson. It uses a discrepant event (phenomenon) to model forces at work on an object resulting in motion.
Type: Lesson Plan
Perspectives Video: Expert
<p>Jump to it and learn more about how quadratic equations are used in robot navigation problem solving!</p>
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
Why can't you put Ethanol fuel in a boat motor?
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
We'll be looking at the role of pitch, number of blades and material for outboard motor props as it relates to the propulsion of a boat
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Math is important to help you get where you want to go in life, especially if you plan to fly there!</p>
Type: Perspectives Video: Professional/Enthusiast
When you watch this video, your knowledge related to flight and physics will really take off!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Factors to consider when making pottery on the wheel are discussed, but not in a way that would make your head spin.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Text Resource
NASA's "Beginner's Guide to Aerodynamics" provides some general information on the basics of aerodynamics. The site allows users to explore at their own pace and level of interest. The topics available include equations of motion, free falling, air resistance, force, gas properties, and atmosphere. Movies, reading materials, and activities are all available to accommodate a variety of different learning styles.
Type: Text Resource
Tutorials
Would a brick or feather fall faster? What would fall faster on the moon?
Type: Tutorial
This video discusses how to figure out the horizontal displacement for a projectile launched at an angle.
Type: Tutorial
This video tutorial from the Khan Academy explains how to calculate the acceleration of ice down a plane made of ice.
Type: Tutorial
This video tutorial shows how to figure out the components of force due to gravity that are parallel and perpendicular to the surface of an inclined plane.
Type: Tutorial
This tutorial is about projectile motion. This powerpoint lecture discusses the independence of the vertical and horizontal motion of projectiles. Students will be asked to solve problems involving projectile motion of both projectiles fired horizontally and at an angle. This tutorial is geared for advanced students.
Type: Tutorial
This tutorial provides the learners with detailed information about forces. Topics covered include Newton's Laws, friction, gravity, balanced and unbalanced forces, vectors, weight, motion and momentum.
Type: Tutorial
Video/Audio/Animation
A 4-minute video in which an Olympic freestyle skier and a physicist discuss the physics behind freestyle skiing.
Type: Video/Audio/Animation
Virtual Manipulatives
This website has a short biography about Sir Isaac Newton. It also reviews his three laws of motion with examples, and ends with a short quiz.
Type: Virtual Manipulative
Learn more about collisions with the use of a virtual air hockey table. Investigate simple and complex collisions in one and two dimensions.Experiment with the number of discs, masses and initial conditions. Vary the elasticity and see how the total momentum and kinetic energy changes during collisions.
Some of the sample learning goals can be:
- Draw "Before and After" pictures of collisions.
- Construct momentum vector representations of "Before and After" collisions.
- Apply law of conservation of momentum to solve problems with collisions.
- Explain why energy is not conserved and varies in some collisions.
- Determine the change in mechanical energy in collisions of varying "elasticity".
- What does "elasticity" mean?
Type: Virtual Manipulative
Chemical equilibrium is the condition which occurs when the concentration of reactants and products participating in a chemical reaction exhibit no net change over time. This simulation shows a model of an equilibrium system for a uni-molecular reaction. The value for the equilibrium constant, K, can be set in the simulation, to observe the reaction reaching the constant.
Type: Virtual Manipulative
This virtual manipulative will allow you to watch a reaction proceed over time. You can vary temperature, barrier height, and potential energies to note how total energy affects reaction rate. You will be able to record concentrations and time in order to extract rate coefficients.
Additionally you can:
- Describe on a microscopic level, with illustrations, how reactions occur.
- Describe how the motion of reactant molecules (speed and direction) contributes to a reaction happening.
- Predict how changes in temperature, or use of a catalyst will affect the rate of a reaction.
- On the potential energy curve, identify the activation energy for forward and reverse reactions and the energy change between reactants and products.
- Form a graph of concentrations as a function of time, students should be able to identify when a system has reached equilibrium.
- Calculate a rate coefficient from concentration and time data.
- Determine how a rate coefficient changes with temperature.
- Compare graphs of concentration versus time to determine which represents the fastest or slowest rate.
Type: Virtual Manipulative
This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.
Areas to Explore:
- Explain why and how a pinball shooter can be used to help understand ideas about reactions.
- Describe on a microscopic level what contributes to a successful reaction.
- Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
- Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
- Draw a potential energy diagram from the energies of reactants and products and activation energy.
- Predict how raising or lowering the temperature will affect a system in the equilibrium.
Type: Virtual Manipulative
This virtual manipulative will the students learn about position, velocity and acceleration. Acceleration is the derivative of velocity with respect to time and the velocity is the derivative of position with respect to time. With the elimination of time, the relationship between the acceleration, velocity and position can be represented as x = v2 / 2a. In the stimulation, students will be able to move the man back and forth with the mouse and plot his motion.
Some of the sample learning goals can be:
- Interpret, predict and draw charts (position, velocity, and acceleration) for common situations.
- Provide reasoning used to make sense of the charts.
Type: Virtual Manipulative
This simulation will provide an insight into the properties of gases. You can explore the more advanced features which enables you to explore three physical situations: Hot Air Balloon (rigid open container with its own heat source), Rigid Sphere (rigid closed container), and Helium Balloon (elastic closed container).
Through this activity you can:
- Determine what causes the balloon, rigid sphere, and helium balloon to rise up or fall down in the box.
- Predict how changing a variable among Pressure, Volume, Temperature and number influences the motion of the balloons.
Type: Virtual Manipulative
This virtual manipulative will allow you to visualize the gravitational force that two objects exert on each other. By changing the properties of the objects, you can see how the gravitational force changes.
Some areas to explore:
- Relate gravitational force to masses of objects and distance between objects.
- Explain Newton's third law for gravitational forces.
- Design experiments that allow you to derive an equation that related mass, distance, and gravitational force.
- Use measurements to determine the universal gravitational constant.
Type: Virtual Manipulative
This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
Type: Virtual Manipulative
This simulation allows you to explore forces and motion as you push household objects up and down a ramp. Observe how the angle of inclination affects the parallel forces. Graphical representation of forces, energy and work makes it easier to understand the concept.
Some of the learning goals can be:
- Predict, qualitatively, how an external force will affect the speed and direction of an object's motion.
- Explain the effects with the help of a free body diagram
- Use free body diagrams to draw position, velocity, acceleration and force graphs and vice versa.
- Explain how the graphs relate to one another.
- Given a scenario or a graph, sketch all four graphs.
Type: Virtual Manipulative
The students will drag a red point across the screen in any direction they please and, in the process, will be able to see the forces that are being put on that point at any given moment.
Type: Virtual Manipulative
The students will try to move a red ball into a blue goal without touching the walls. They will have fun competing amongst themselves to get the best time but at the same time they will also be learning about vectors, velocity, and acceleration.
Type: Virtual Manipulative
This simulation demonstrates the physics of projectile motion. The user can fire different objects through a cannon, set its speed, angle and mass and observe the resultant motion.
Type: Virtual Manipulative
This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.
Type: Virtual Manipulative
Parent Resources
Perspectives Video: Professional/Enthusiasts
<p>Math is important to help you get where you want to go in life, especially if you plan to fly there!</p>
Type: Perspectives Video: Professional/Enthusiast
When you watch this video, your knowledge related to flight and physics will really take off!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Factors to consider when making pottery on the wheel are discussed, but not in a way that would make your head spin.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Tutorial
This tutorial provides the learners with detailed information about forces. Topics covered include Newton's Laws, friction, gravity, balanced and unbalanced forces, vectors, weight, motion and momentum.
Type: Tutorial
Video/Audio/Animation
A 4-minute video in which an Olympic freestyle skier and a physicist discuss the physics behind freestyle skiing.
Type: Video/Audio/Animation
Virtual Manipulatives
Learn more about collisions with the use of a virtual air hockey table. Investigate simple and complex collisions in one and two dimensions.Experiment with the number of discs, masses and initial conditions. Vary the elasticity and see how the total momentum and kinetic energy changes during collisions.
Some of the sample learning goals can be:
- Draw "Before and After" pictures of collisions.
- Construct momentum vector representations of "Before and After" collisions.
- Apply law of conservation of momentum to solve problems with collisions.
- Explain why energy is not conserved and varies in some collisions.
- Determine the change in mechanical energy in collisions of varying "elasticity".
- What does "elasticity" mean?
Type: Virtual Manipulative
Chemical equilibrium is the condition which occurs when the concentration of reactants and products participating in a chemical reaction exhibit no net change over time. This simulation shows a model of an equilibrium system for a uni-molecular reaction. The value for the equilibrium constant, K, can be set in the simulation, to observe the reaction reaching the constant.
Type: Virtual Manipulative
This virtual manipulative will help the learners understand Coulomb's law which is the fundamental principle of electrostatics. It is the force of attraction or repulsion between two charged particles which is directly proportional to the product of the charges and inversely proportional to the distance between them.
Type: Virtual Manipulative
This virtual manipulative will help the students to understand that in order for a chemical reaction to take place the reactants must collide. The collision between the molecules must provide the amount of kinetic energy needed to break the molecular bonds and form new ones. Students can control the speed of the simulation to observe the collision and can also reset the initial energy settings to high or low to show that some chemical reactions will not occur in low energy (or low temperature) settings.
Type: Virtual Manipulative
This activity will help the students learn about the polymerization. The process of polymerization can be classified into two categories: Chain growth polymerization and step growth polymerization. In this activity students will understand the process of step growth polymerization in which bi-functional or multi-functional monomers react to form polymers.
Type: Virtual Manipulative
This simulated activity will help understand and apply Pascal's principle which states that pressure is transmitted undiminished in an enclosed static fluid. This is the theoretical foundation of hydraulic levers.
Type: Virtual Manipulative
This virtual manipulative will help the students understand what determines the concentration of a solution. They will learn about the relationships between moles, liters and molarity by adjusting the amount of solute, and solution volume. Students can change solutes to compare different chemical compounds in water.
Some of the sample learning goals can be:
- Describe the relationships between volume and amount of solute to concentration
- Explain how solution color and concentration are related.
- Calculate the concentration of solutions in units of molarity (mol/L)
- Compare solubility limits between solutes.
Type: Virtual Manipulative
This virtual manipulative will allow you to watch a reaction proceed over time. You can vary temperature, barrier height, and potential energies to note how total energy affects reaction rate. You will be able to record concentrations and time in order to extract rate coefficients.
Additionally you can:
- Describe on a microscopic level, with illustrations, how reactions occur.
- Describe how the motion of reactant molecules (speed and direction) contributes to a reaction happening.
- Predict how changes in temperature, or use of a catalyst will affect the rate of a reaction.
- On the potential energy curve, identify the activation energy for forward and reverse reactions and the energy change between reactants and products.
- Form a graph of concentrations as a function of time, students should be able to identify when a system has reached equilibrium.
- Calculate a rate coefficient from concentration and time data.
- Determine how a rate coefficient changes with temperature.
- Compare graphs of concentration versus time to determine which represents the fastest or slowest rate.
Type: Virtual Manipulative
This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.
Areas to Explore:
- Explain why and how a pinball shooter can be used to help understand ideas about reactions.
- Describe on a microscopic level what contributes to a successful reaction.
- Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
- Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
- Draw a potential energy diagram from the energies of reactants and products and activation energy.
- Predict how raising or lowering the temperature will affect a system in the equilibrium.
Type: Virtual Manipulative
This virtual manipulative will the students learn about position, velocity and acceleration. Acceleration is the derivative of velocity with respect to time and the velocity is the derivative of position with respect to time. With the elimination of time, the relationship between the acceleration, velocity and position can be represented as x = v2 / 2a. In the stimulation, students will be able to move the man back and forth with the mouse and plot his motion.
Some of the sample learning goals can be:
- Interpret, predict and draw charts (position, velocity, and acceleration) for common situations.
- Provide reasoning used to make sense of the charts.
Type: Virtual Manipulative
This simulation will provide an insight into the properties of gases. You can explore the more advanced features which enables you to explore three physical situations: Hot Air Balloon (rigid open container with its own heat source), Rigid Sphere (rigid closed container), and Helium Balloon (elastic closed container).
Through this activity you can:
- Determine what causes the balloon, rigid sphere, and helium balloon to rise up or fall down in the box.
- Predict how changing a variable among Pressure, Volume, Temperature and number influences the motion of the balloons.
Type: Virtual Manipulative
This virtual manipulative will allow you to visualize the gravitational force that two objects exert on each other. By changing the properties of the objects, you can see how the gravitational force changes.
Some areas to explore:
- Relate gravitational force to masses of objects and distance between objects.
- Explain Newton's third law for gravitational forces.
- Design experiments that allow you to derive an equation that related mass, distance, and gravitational force.
- Use measurements to determine the universal gravitational constant.
Type: Virtual Manipulative
This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
Type: Virtual Manipulative
This simulation allows you to explore forces and motion as you push household objects up and down a ramp. Observe how the angle of inclination affects the parallel forces. Graphical representation of forces, energy and work makes it easier to understand the concept.
Some of the learning goals can be:
- Predict, qualitatively, how an external force will affect the speed and direction of an object's motion.
- Explain the effects with the help of a free body diagram
- Use free body diagrams to draw position, velocity, acceleration and force graphs and vice versa.
- Explain how the graphs relate to one another.
- Given a scenario or a graph, sketch all four graphs.
Type: Virtual Manipulative
This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.
Type: Virtual Manipulative