A. Energy is involved in all physical and chemical processes. It is conserved, and can be transformed from one form to another and into work. At the atomic and nuclear levels energy is not continuous but exists in discrete amounts. Energy and mass are related through Einstein's equation E=mc2.
B. The properties of atomic nuclei are responsible for energy-related phenomena such as radioactivity, fission and fusion.
C. Changes in entropy and energy that accompany chemical reactions influence reaction paths. Chemical reactions result in the release or absorption of energy.
D. The theory of electromagnetism explains that electricity and magnetism are closely related. Electric charges are the source of electric fields. Moving charges generate magnetic fields.
E. Waves are the propagation of a disturbance. They transport energy and momentum but do not transport matter.
Related Benchmarks
Related Access Points
Independent
Supported
Participatory
Related Resources
Educational Game
Lesson Plans
Original Student Tutorials
Perspectives Video: Experts
Perspectives Video: Professional/Enthusiasts
Perspectives Video: Teaching Ideas
Resource Collections
Teaching Ideas
Text Resources
Tutorials
Video/Audio/Animations
Virtual Manipulatives
Student Resources
Original Student Tutorials
Discover why some reactions leave you feeling warmer while others leave you feeling cooler in this interactive tutorial.
This is part 1 in a two-part series. Click  to open Part 2 on endothermic and exothermic phase changes.
Type: Original Student Tutorial
Explore the differences between endothermic and exothermic phase changes in this interactive tutorial.
This is part 2 in a two-part series. Click to open Part 1 on endothermic and exothermic reactions.
Type: Original Student Tutorial
Explore how heat changes the temperature or the state of matter of a material in this interactive tutorial.
Type: Original Student Tutorial
Explore the three types of heat transfer that occur in our world as you complete this interactive tutorial.
Type: Original Student Tutorial
Educational Game
This interesting game is to hit the target located opposite a electron gun. The electron gun will fire an electron. This electron must not hit any walls or obstacles during the attempt. The user may direct the electron along a path by placing stationary positive and negative charges at various locations. This game will help support learning about the concept of the electric field, which is created when electrons repel other electrons.
Type: Educational Game
Lesson Plan
This lesson's primary focus is to introduce high school students to the concept of Elasticity, which is one of the fundamental concepts in the understanding of the physics of deformation in solids. The main learning objectives are: (1) To understand the essential concept of Elasticity and be able to distinguish simple solids objects based on degree and extent of their elastic properties; (2) To appreciate the utility of the elastic force vs. deformation curve through experiments; (3) To be aware of potential sources of error present in such experiments and identify corrective measures; and (4) To appreciate the relevance of Elasticity in practical applications.
Type: Lesson Plan
Perspectives Video: Experts
Explore how pendulums show the transformation of gravitational potential energy to kinetic energy and back with Dr. Simon Capstick in this engaging video. Don't miss his broken-nose defying test of the physics with a bowling ball pendulum.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Dr. Oates uses engineering practices to design artificial muscles that react to electrostatic fields.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
The director of the National High Magnetic Field Laboratory describes electromagnetic waves.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
An engineer that has previously worked on the F-22 Raptor explains how resistivity in wires plays a role in the development of a large machine.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Learn how the shape of a didgeridoo affects its sound in this totally tubular video.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Sharpen your knowledge by understanding the forces used to make stone tools.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Physics is cool, especially if you want to make super-cold, super-efficient, superconductive materials.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Want to watch a video on audio engineering and frequency? Sounds good to me.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Dive deep into science as an oceanographer describes conduction, convection, and radiation and their relationship to oceanic systems.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Forge a new understanding of metallurgy and heat transfer by learning how this blacksmith and collier make nails.</p>
Type: Perspectives Video: Professional/Enthusiast
It's okay if you're not on quite the same wavelength as this ethnomusicologist. In Balinese gamelan tuning, that's a good thing!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
If physics has you down, don't fret - this musician covers all the bases.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Physical science and social science connect in this discussion of Balinese gamelan. Full STEAM ahead!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.</p>
Type: Perspectives Video: Professional/Enthusiast
Text Resource
This site presents the basic ideas of magnetism and applies these ideas to the earth's magnetic field. There are several useful diagrams and pictures interspersed throughout this lesson, as well as links to more detailed subjects. This is an introduction to a larger collection on exploring the Earth's magnetosphere. A Spanish translation is available.
Type: Text Resource
Tutorials
This tutorial contains information about the characteristics of longitudinal, transverse, and surface waves. This tutorial will also provide information about the amplitude, frequency, wavelength, speed, refraction, reflection, diffraction, and constructive and destructive interference of the waves.
Type: Tutorial
This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.
Type: Tutorial
- Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
- Indicate the parts of the eye that are responsible for vision
- View how images are formed in the eye
Type: Tutorial
- Learn how a concave spherical mirror generates an image
- Observe how the size and position of the image changes with the object distance from the mirror
- Learn the difference between a real image and a virtual image
- Learn some applications of concave mirrors
Type: Tutorial
- Learn how a convex mirror forms the image of an object
- Understand why convex mirrors form small virtual images
- Observe the change in size and position of the image with the change in object's distance from the mirror
- Learn some practical applications of convex mirrors
Type: Tutorial
- Observe the change of color of a black body radiator upon changes in temperature
- Understand that at 0 Kelvin or Absolute Zero there is no molecular motion
Type: Tutorial
This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.
Type: Tutorial
- Observe that light is composed of oscillating electric and magnetic waves
- Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
- Observe the difference in propagation of light of different wavelengths
Type: Tutorial
- Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
- Compare the characteristics of waves of different wavelengths
Type: Tutorial
- Learn to trace the path of propagating light waves using geometrical optics
- Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
- Learn the equations used in determining the size and locations of images formed by thin lenses
Type: Tutorial
Video/Audio/Animations
- Observe the photosynthesis mechanism in the plant
- Learn about the main chemical reactions that takes place during photosynthesis
- Learn how solar energy is converted into chemical energy
Type: Video/Audio/Animation
A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics
Type: Video/Audio/Animation
Learn how to build a circuit
Show the difference between AC and DC
Describe the effect of an inductor on a circuit
Describe the effect of a capacitor on a circuit
Learn how to use an ammeter and a voltmeter in a circuit
Type: Video/Audio/Animation
This video contains a demo that can be performed to show that light consists of particles
It also uses Lasers with different wavelengths
Type: Video/Audio/Animation
- Identify the driving force in a circuit using a battery model
- Explain the difference between conductive (metals and photoconductors) and non-conductive (plastics) materials
Type: Video/Audio/Animation
- Explain the processes of absorption and emission
- Describe how a laser works
- Determine the factors affecting lasing
Type: Video/Audio/Animation
The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.
Type: Video/Audio/Animation
Virtual Manipulatives
In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.
Type: Virtual Manipulative
This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed.
Type: Virtual Manipulative
This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:
- Visualize and describe the photoelectric effect experiment.
- Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
- Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
- Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.
Type: Virtual Manipulative
Learn how to build a circuit
Learn how to measure voltage in a circuit using a voltmeter
Determine the resistance of certain objects that can be used as part of an electric circuit
Explain the difference between parallel and series circuits
Type: Virtual Manipulative
This virtual manipulative will allow the students to understand how does a lens form an image. Students can see how light rays are refracted by a lens. Students can recognize that the image changes when they adjust the focal length of the lens, move the object, move the lens, or move the screen.
Some of the sample learning goals can be:
- Explain how an image is formed by a converging lens using ray diagrams.
- How changing the lens (radius, index, and diameter) effects where the image appears and ho it looks it terms of magnification, brightness and inversion.
Type: Virtual Manipulative
This virtual manipulative will allow the students to understand that the electric field is the region where the force on one charge is caused by the presence of another charge. The students will recognize the equipotential lines that exist between the charged regions.
Some of the sample learning goals can be:
- Determine the variables that affect how charged bodies interact.
- Predict how charged bodies will interact.
- Describe the strength and direction of the electric field around a charged body.
Type: Virtual Manipulative
This virtual manipulative will allow the user to see how the equation form of ohm's law relates to a simple circuit. Learners can adjust the voltage and resistance, and see the current change according to Ohm's law. The size of the symbols in the equation change to match the circuit diagram.
Type: Virtual Manipulative
This virtual manipulative will allow you to produce light by bombarding atoms with electrons. You can also visualize how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.
Other areas to investigate:
- Provide a basic design for a discharge lamp and explain the function of the different components.
- Explain the basic structure of an atom and relate it to the color of light produced by discharge lamps.
- Explain why discharge lamps emit only certain colors.
- Design a discharge lamp to emit any desired spectrum of colors.
Type: Virtual Manipulative
This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil.
Some of the sample learning goals can be:
- Identify equipment and conditions that produce induction.
- Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
- Predict how the current will change when the conditions are varied.
- Explain practical applications of Faraday's Law.
- Explain what is the cause of the induction.
Type: Virtual Manipulative
Explore how a capacitor works in this simulation. Change the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. You can observe the electric field in the capacitor, measure voltage and the electric field.
Other investigations can include:
- Determine the relationship between charge and voltage for a capacitor.
- Determine the energy stored in a capacitor or a set of capacitors in a circuit.
- Explore the effect of space and dielectric materials inserted between the conductors of the capacitor in a circuit.
- Determine the equivalent capacitance of a set of capacitors in series and in parallel in a circuit.
Type: Virtual Manipulative
This is a virtual manipulative to understand beta decay. In the Beta decay process, a neutron decays into a proton and an electron (beta radiation). The process also requires the emission of a neutrino to maintain momentum and energy balance. Beta decay allows the atom to obtain the optimal ratio of protons and neutrons.
Type: Virtual Manipulative
This virtual manipulative will help you to understand the process of alpha decay. Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.
Type: Virtual Manipulative
This manipulative will help the students to learn about the physics of resistance in a wire. The electrical resistance of a wire would be expected to be greater for a longer wire, less for a wire of larger cross sectional area, and would be expected to depend upon the material out of which the wire is made, to understand this, students can change the resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire.
Some of the sample learning goals can be:
- What characteristics of a resistor are variable in this model?
- How does each affect the resistance (will increasing or decreasing each make the resistance correspondingly increase or decrease?)
- Explain your ideas about why they change the resistance.
Type: Virtual Manipulative
Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this simulation you can:
- Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
- Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
- Describe how to put these two ideas together to detect where there is a higher density of spins.
Type: Virtual Manipulative
This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.
Areas to explore:
- How light interacts with molecules in our atmosphere.
- Identify that absorption of light depends on the molecule and the type of light.
- Relate the energy of the light to the resulting motion.
- Identify that energy increases from microwave to ultraviolet.
- Predict the motion of a molecule based on the type of light it absorbs.
- Identify how the structure of a molecule affects how it interacts with light.
Type: Virtual Manipulative
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. Students can vary friction and the strength of gravity.
- Design experiments to describe how variables affect the motion of a pendulum
- Use a photogate timer to determine quantitatively how the period of a pendulum depends on the variables you described
- Determine the gravitational acceleration of planet X
- Explain the conservation of Mechanical energy concept using kinetic energy and gravitational potential energy
- Describe energy chart from position or selected speeds
Type: Virtual Manipulative
- Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
- Explain the difference between moving the magnet through the coil from the right side versus the left side.
- Explain the difference between moving magnet through the big coil versus the smaller coil.
Type: Virtual Manipulative
An electronic kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.
Other options for exploration:
- Discuss basic electricity relationships
- Build circuits from schematic drawings.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationship in circuits.
- Discuss basic electricity relationships in series and parallel circuits.
- Provide reasoning to explain the measurements in circuits.
- Determine the resistance of common objects in the "Grab Bag".
Type: Virtual Manipulative
The students will see and hear the effects of changing the frequency and/or amplitude of a sound wave. This animation may also be used to demonstrate the Doppler effect, reflection and interference of sound waves.
Type: Virtual Manipulative
Complete this virtual manipulative to gain a better understanding of nuclear fission. Study the basic principles behind chain reactions and a nuclear reactor.
Type: Virtual Manipulative
The students will rub a balloon on a sweater and see how charges are exchanged between the two objects. With these changes they will see their interactions.
Type: Virtual Manipulative
The students will have the opportunity to build their own circuit loop with the materials presented to them.
Type: Virtual Manipulative
Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time.
Type: Virtual Manipulative
Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.
Type: Virtual Manipulative
Parent Resources
Educational Game
This interesting game is to hit the target located opposite a electron gun. The electron gun will fire an electron. This electron must not hit any walls or obstacles during the attempt. The user may direct the electron along a path by placing stationary positive and negative charges at various locations. This game will help support learning about the concept of the electric field, which is created when electrons repel other electrons.
Type: Educational Game
Perspectives Video: Experts
Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
The director of the National High Magnetic Field Laboratory describes electromagnetic waves.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
Learn how the shape of a didgeridoo affects its sound in this totally tubular video.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Sharpen your knowledge by understanding the forces used to make stone tools.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Physics is cool, especially if you want to make super-cold, super-efficient, superconductive materials.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Want to watch a video on audio engineering and frequency? Sounds good to me.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Dive deep into science as an oceanographer describes conduction, convection, and radiation and their relationship to oceanic systems.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Forge a new understanding of metallurgy and heat transfer by learning how this blacksmith and collier make nails.</p>
Type: Perspectives Video: Professional/Enthusiast
It's okay if you're not on quite the same wavelength as this ethnomusicologist. In Balinese gamelan tuning, that's a good thing!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
If physics has you down, don't fret - this musician covers all the bases.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Physical science and social science connect in this discussion of Balinese gamelan. Full STEAM ahead!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
<p>Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.</p>
Type: Perspectives Video: Professional/Enthusiast
Perspectives Video: Teaching Ideas
A physics teacher presents some quick teaching ideas for demonstrating energy transfer through convection, conduction, and radiation.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Teaching Idea
This colorful light and energy lesson idea will make you glow!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Teaching Idea
Tutorial
This tutorial contains information about the characteristics of longitudinal, transverse, and surface waves. This tutorial will also provide information about the amplitude, frequency, wavelength, speed, refraction, reflection, diffraction, and constructive and destructive interference of the waves.
Type: Tutorial
Virtual Manipulatives
In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.
Type: Virtual Manipulative
This virtual manipulative will help the learners understand Coulomb's law which is the fundamental principle of electrostatics. It is the force of attraction or repulsion between two charged particles which is directly proportional to the product of the charges and inversely proportional to the distance between them.
Type: Virtual Manipulative
This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed.
Type: Virtual Manipulative
Play with a 1D or 2D system of coupled mass-spring oscillators. Vary the number of masses, set the initial conditions, and watch the system evolve. See the spectrum of normal modes for arbitrary motion. Compare longitudinal and transverse modes.
Type: Virtual Manipulative
This virtual manipulative demonstrates the electrostatic interaction between a charged balloon and a wall. Students may play with the slider of "Charges on the balloon" to change the type and amount of the charges on the balloon. The simulation also has the option of seeing a microscopic model which helps in understanding the phenomenon. After adjusting the charge press PLAY to observe the interaction.
Type: Virtual Manipulative
This visual interactive simulation will help the student watch how a charged particle moves in a magnetic field. This force is defined as the Lorentz force which is the force on a point charge due to electromagnetic fields. There is a relationship between the movement of the particle through the magnetic field, the strength of that magnetic field and the force on the particle. The following equation described the force: F=qvB
Where:
- F is the force in Newtons
- q is the electric charge in coulombs
- v is the velocity of the charge in meters/sound
- B is the strength of the magnetic field.
Type: Virtual Manipulative
This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:
- Visualize and describe the photoelectric effect experiment.
- Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
- Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
- Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.
Type: Virtual Manipulative
This virtual manipulative will allow the students to understand how does a lens form an image. Students can see how light rays are refracted by a lens. Students can recognize that the image changes when they adjust the focal length of the lens, move the object, move the lens, or move the screen.
Some of the sample learning goals can be:
- Explain how an image is formed by a converging lens using ray diagrams.
- How changing the lens (radius, index, and diameter) effects where the image appears and ho it looks it terms of magnification, brightness and inversion.
Type: Virtual Manipulative
This virtual manipulative will allow the students to understand that the electric field is the region where the force on one charge is caused by the presence of another charge. The students will recognize the equipotential lines that exist between the charged regions.
Some of the sample learning goals can be:
- Determine the variables that affect how charged bodies interact.
- Predict how charged bodies will interact.
- Describe the strength and direction of the electric field around a charged body.
Type: Virtual Manipulative
This virtual manipulative will allow the students to explore the interactions between a compass and bar magnet. Students can discover that magnetic fields are produced when all the electrons in a metal object are spinning in the same direction, either as a natural phenomenon, in an artificially created magnet, or when they are induced to do so by an electromagnetic field.
Some of the sample learning goals can be:
- Predict the direction of the magnet field for different locations around a bar magnet and electromagnet.
- Compare and contrast bar magnets and electromagnets.
- Identify the characteristics of electromagnets that are variable and what effects each variable has on the magnetic field's strength and direction.
- Relate magnetic field strength to distance quantitatively and qualitatively.
Type: Virtual Manipulative
This virtual manipulative will allow the user to see how the equation form of ohm's law relates to a simple circuit. Learners can adjust the voltage and resistance, and see the current change according to Ohm's law. The size of the symbols in the equation change to match the circuit diagram.
Type: Virtual Manipulative
This virtual manipulative will allow you to produce light by bombarding atoms with electrons. You can also visualize how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.
Other areas to investigate:
- Provide a basic design for a discharge lamp and explain the function of the different components.
- Explain the basic structure of an atom and relate it to the color of light produced by discharge lamps.
- Explain why discharge lamps emit only certain colors.
- Design a discharge lamp to emit any desired spectrum of colors.
Type: Virtual Manipulative
This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil.
Some of the sample learning goals can be:
- Identify equipment and conditions that produce induction.
- Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
- Predict how the current will change when the conditions are varied.
- Explain practical applications of Faraday's Law.
- Explain what is the cause of the induction.
Type: Virtual Manipulative
Explore how a capacitor works in this simulation. Change the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. You can observe the electric field in the capacitor, measure voltage and the electric field.
Other investigations can include:
- Determine the relationship between charge and voltage for a capacitor.
- Determine the energy stored in a capacitor or a set of capacitors in a circuit.
- Explore the effect of space and dielectric materials inserted between the conductors of the capacitor in a circuit.
- Determine the equivalent capacitance of a set of capacitors in series and in parallel in a circuit.
Type: Virtual Manipulative
This is a virtual manipulative to understand beta decay. In the Beta decay process, a neutron decays into a proton and an electron (beta radiation). The process also requires the emission of a neutrino to maintain momentum and energy balance. Beta decay allows the atom to obtain the optimal ratio of protons and neutrons.
Type: Virtual Manipulative
This virtual manipulative will help you to understand the process of alpha decay. Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.
Type: Virtual Manipulative
This manipulative will help the students to learn about the physics of resistance in a wire. The electrical resistance of a wire would be expected to be greater for a longer wire, less for a wire of larger cross sectional area, and would be expected to depend upon the material out of which the wire is made, to understand this, students can change the resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire.
Some of the sample learning goals can be:
- What characteristics of a resistor are variable in this model?
- How does each affect the resistance (will increasing or decreasing each make the resistance correspondingly increase or decrease?)
- Explain your ideas about why they change the resistance.
Type: Virtual Manipulative
Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this simulation you can:
- Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
- Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
- Describe how to put these two ideas together to detect where there is a higher density of spins.
Type: Virtual Manipulative
This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.
Areas to explore:
- How light interacts with molecules in our atmosphere.
- Identify that absorption of light depends on the molecule and the type of light.
- Relate the energy of the light to the resulting motion.
- Identify that energy increases from microwave to ultraviolet.
- Predict the motion of a molecule based on the type of light it absorbs.
- Identify how the structure of a molecule affects how it interacts with light.
Type: Virtual Manipulative
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. Students can vary friction and the strength of gravity.
- Design experiments to describe how variables affect the motion of a pendulum
- Use a photogate timer to determine quantitatively how the period of a pendulum depends on the variables you described
- Determine the gravitational acceleration of planet X
- Explain the conservation of Mechanical energy concept using kinetic energy and gravitational potential energy
- Describe energy chart from position or selected speeds
Type: Virtual Manipulative
- Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
- Explain the difference between moving the magnet through the coil from the right side versus the left side.
- Explain the difference between moving magnet through the big coil versus the smaller coil.
Type: Virtual Manipulative
An electronic kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.
Other options for exploration:
- Discuss basic electricity relationships
- Build circuits from schematic drawings.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationship in circuits.
- Discuss basic electricity relationships in series and parallel circuits.
- Provide reasoning to explain the measurements in circuits.
- Determine the resistance of common objects in the "Grab Bag".
Type: Virtual Manipulative