Related Benchmarks
Related Access Points
Access Points
Related Resources
Formative Assessments
Lesson Plans
Original Student Tutorials
Perspectives Video: Expert
Perspectives Video: Professional/Enthusiasts
Problem-Solving Tasks
Tutorials
Video/Audio/Animations
Virtual Manipulative
Student Resources
Original Student Tutorials
What is a function? Where do we see functions in real life? Explore these questions and more using different contexts in this interactive tutorial.
This is part 1 in a two-part series on functions. Click HERE to open Part 2.
Type: Original Student Tutorial
Learn how math models can show why social distancing during a epidemic or pandemic is important in this interactive tutorial.
Type: Original Student Tutorial
Cruise along as you discover how to qualitatively describe functions in this interactive tutorial.
Type: Original Student Tutorial
Have some fun with FUNctions! Learn how to identify linear and non-linear functions in this interactive tutorial.
Type: Original Student Tutorial
Learn how to determine if a relationship is a function in this interactive tutorial that shows you inputs, outputs, equations, graphs and verbal descriptions.
Type: Original Student Tutorial
Problem-Solving Tasks
The purpose of this task is for students to interpret two distance-time graphs in terms of the context of a bicycle race. There are two major mathematical aspects to this: interpreting what a particular point on the graph means in terms of the context and understanding that the "steepness" of the graph tells us something about how fast the bicyclists are moving.
Type: Problem-Solving Task
This task emphasizes the importance of the "every input has exactly one output" clause in the definition of a function, which is violated in the table of values of the two populations. Noteworthy is that since the data is a collection of input-output pairs, no verbal description of the function is given, so part of the task is processing what the "rule form" of the proposed functions would look like.
Type: Problem-Solving Task
This task can be played as a game where students have to guess the rule and the instructor gives more and more input output pairs. Giving only three input output pairs might not be enough to clarify the rule. Instructors might consider varying the inputs in, for example, the second table, to provide non-integer entries. A nice variation on the game is to have students who think they found the rule supply input output pairs, and the teachers confirms or denies that they are right. Verbalizing the rule requires precision of language. This task can be used to introduce the idea of a function as a rule that assigns a unique output to every input.
Type: Problem-Solving Task
The primary purpose of this task is to elicit common misconceptions that arise when students try to model situations with linear functions. This task, being multiple choice, could also serve as a quick assessment to gauge a class' understanding of modeling with linear functions.
Type: Problem-Solving Task
This is a simple task about interpreting the graph of a function in terms of the relationship between quantities that it represents.
Type: Problem-Solving Task
In this task students draw the graphs of two functions from verbal descriptions. Both functions describe the same situation but changing the viewpoint of the observer changes where the function has output value zero. This small twist forces the students to think carefully about the interpretation of the dependent variable. This task could be used in different ways: To generate a class discussion about graphing. As a quick assessment about graphing, for example during a class warm-up. To engage students in small group discussion.
Type: Problem-Solving Task
In this task students interpret two graphs that look the same but show very different quantities. The first graph gives information about how fast a car is moving while the second graph gives information about the position of the car. This problem works well to generate a class or small group discussion. Students learn that graphs tell stories and have to be interpreted by carefully thinking about the quantities shown.
Type: Problem-Solving Task
In this task, the rule of the function is more conceptual. We assign to a year (an input) the total amount of garbage produced in that year (the corresponding output). Even if we didn't know the exact amount for a year, it is clear that there will not be two different amounts of garbage produced in the same year. Thus, this makes sense as a "rule" even though there is no algorithmic way to determine the output for a given input except looking it up in the table.
Type: Problem-Solving Task
Tutorials
In an equation with 2 variables, we will be able to determine which is the dependent variable, and which is the independent variable.
Type: Tutorial
A graph in Cartesian coordinates may represent a function or may only represent a binary relation. The "vertical line test" is a visual way to determine whether or not a graph represents a function.
Type: Tutorial
Video/Audio/Animations
Although the domain and codomain of functions can consist of any type of objects, the most common functions encountered in Algebra are real-valued functions of a real variable, whose domain and codomain are the set of real numbers, R.
Type: Video/Audio/Animation
Two sets which are often of primary interest when studying binary relations are the domain and range of the relation.
Type: Video/Audio/Animation
Parent Resources
Problem-Solving Tasks
This task has students engaging in a simple modeling exercise, taking verbal and numerical descriptions of battery life as a function of time and writing down linear models for these quantities. To draw conclusions about the quantities, students have to find a common way of describing them.
Type: Problem-Solving Task
The purpose of this task is for students to interpret two distance-time graphs in terms of the context of a bicycle race. There are two major mathematical aspects to this: interpreting what a particular point on the graph means in terms of the context and understanding that the "steepness" of the graph tells us something about how fast the bicyclists are moving.
Type: Problem-Solving Task
This task emphasizes the importance of the "every input has exactly one output" clause in the definition of a function, which is violated in the table of values of the two populations. Noteworthy is that since the data is a collection of input-output pairs, no verbal description of the function is given, so part of the task is processing what the "rule form" of the proposed functions would look like.
Type: Problem-Solving Task
This task can be played as a game where students have to guess the rule and the instructor gives more and more input output pairs. Giving only three input output pairs might not be enough to clarify the rule. Instructors might consider varying the inputs in, for example, the second table, to provide non-integer entries. A nice variation on the game is to have students who think they found the rule supply input output pairs, and the teachers confirms or denies that they are right. Verbalizing the rule requires precision of language. This task can be used to introduce the idea of a function as a rule that assigns a unique output to every input.
Type: Problem-Solving Task
The primary purpose of this task is to elicit common misconceptions that arise when students try to model situations with linear functions. This task, being multiple choice, could also serve as a quick assessment to gauge a class' understanding of modeling with linear functions.
Type: Problem-Solving Task
This is a simple task about interpreting the graph of a function in terms of the relationship between quantities that it represents.
Type: Problem-Solving Task
In this task students draw the graphs of two functions from verbal descriptions. Both functions describe the same situation but changing the viewpoint of the observer changes where the function has output value zero. This small twist forces the students to think carefully about the interpretation of the dependent variable. This task could be used in different ways: To generate a class discussion about graphing. As a quick assessment about graphing, for example during a class warm-up. To engage students in small group discussion.
Type: Problem-Solving Task
In this task students interpret two graphs that look the same but show very different quantities. The first graph gives information about how fast a car is moving while the second graph gives information about the position of the car. This problem works well to generate a class or small group discussion. Students learn that graphs tell stories and have to be interpreted by carefully thinking about the quantities shown.
Type: Problem-Solving Task
In this task, the rule of the function is more conceptual. We assign to a year (an input) the total amount of garbage produced in that year (the corresponding output). Even if we didn't know the exact amount for a year, it is clear that there will not be two different amounts of garbage produced in the same year. Thus, this makes sense as a "rule" even though there is no algorithmic way to determine the output for a given input except looking it up in the table.
Type: Problem-Solving Task