A. Motion can be measured and described qualitatively and quantitatively. Net forces create a change in motion. When objects travel at speeds comparable to the speed of light, Einstein's special theory of relativity applies.
B. Momentum is conserved under well-defined conditions. A change in momentum occurs when a net force is applied to an object over a time interval.
C. The Law of Universal Gravitation states that gravitational forces act on all objects irrespective of their size and position.
D. Gases consist of great numbers of molecules moving in all directions. The behavior of gases can be modeled by the kinetic molecular theory.
E. Chemical reaction rates change with conditions under which they occur. Chemical equilibrium is a dynamic state in which forward and reverse processes occur at the same rates.
Related Courses
Related Access Points
Related Resources
Lesson Plans
Original Student Tutorials
Tutorial
Virtual Manipulatives
STEM Lessons - Model Eliciting Activity
This MEA is about space exploration. Students will review data on six extrasolar planets and determine which one would be most feasible to explore first.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
Original Student Tutorials Science - Grades 9-12
Follow Isaac Newton's journey from watching the apple fall to explaining the motion of the Moon by deriving the law of universal gravitation in this interactive science tutorial.
Learn to calculate the gravitational force on an object or its acceleration due to gravity using Newton's law of universal gravitation in this interactive science tutorial.
This is part 2 in a two-part series. Click HERE to open Part 1.
Student Resources
Original Student Tutorials
Learn to calculate the gravitational force on an object or its acceleration due to gravity using Newton's law of universal gravitation in this interactive science tutorial.
This is part 2 in a two-part series. Click HERE to open Part 1.
Type: Original Student Tutorial
Follow Isaac Newton's journey from watching the apple fall to explaining the motion of the Moon by deriving the law of universal gravitation in this interactive science tutorial.
Type: Original Student Tutorial
Tutorial
Would a brick or feather fall faster? What would fall faster on the moon?
Type: Tutorial
Virtual Manipulative
This virtual manipulative will allow you to visualize the gravitational force that two objects exert on each other. By changing the properties of the objects, you can see how the gravitational force changes.
Some areas to explore:
- Relate gravitational force to masses of objects and distance between objects.
- Explain Newton's third law for gravitational forces.
- Design experiments that allow you to derive an equation that related mass, distance, and gravitational force.
- Use measurements to determine the universal gravitational constant.
Type: Virtual Manipulative
Parent Resources
Virtual Manipulative
This virtual manipulative will allow you to visualize the gravitational force that two objects exert on each other. By changing the properties of the objects, you can see how the gravitational force changes.
Some areas to explore:
- Relate gravitational force to masses of objects and distance between objects.
- Explain Newton's third law for gravitational forces.
- Design experiments that allow you to derive an equation that related mass, distance, and gravitational force.
- Use measurements to determine the universal gravitational constant.
Type: Virtual Manipulative