Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.
Related Standards
Related Access Points
Access Points
Related Resources
Formative Assessments
Image/Photograph
Lesson Plans
Original Student Tutorials
Perspectives Video: Experts
Problem-Solving Tasks
Text Resource
Tutorials
Video/Audio/Animations
Virtual Manipulatives
Student Resources
Original Student Tutorials
Learn how to calculate the probability of simple events, that probability is the likeliness of an event occurring, and that some events may be more likely than others to occur in this interactive tutorial.
Type: Original Student Tutorial
Help Alice discover that compound probabilities can be determined through calculations or by drawing tree diagrams in this interactive tutorial.
Type: Original Student Tutorial
Learn how to use probability to predict expected outcomes at the Carnival in this interactive tutorial.
Type: Original Student Tutorial
Problem-Solving Tasks
This task asks students to calculate probabilities using information presented in a two-way frequency table.
Type: Problem-Solving Task
The purpose of this task is to provide students with the opportunity to determine experimental probabilities by collecting data. The cylindrical objects used in this task typically have three different resting positions but not all of these may be equally likely and some may be extremely unlikely or impossible when the object is tossed. Furthermore, obtaining the probabilities of the outcomes is perhaps only possible through the use of long-run relative frequencies. This is because these cylinders do not have the same types of symmetries as objects that are often used as dice, such as cubes or tetrahedrons, where each outcome is equally likely.
Type: Problem-Solving Task
This resource involves a simple data-gathering activity which furnishes data that students organize into a table. They are then asked to refer to the data and determine the probability of various outcomes.
Type: Problem-Solving Task
As studies in statistics and probability unfold, students will not yet know the rules of probability for compound events. Thus, simulation is used to find an approximate answer to these questions. In fact, part b would be a challenge to students who do know the rules of probability, further illustrating the power of simulation to provide relatively easy approximate answers to wide-ranging problems.
Type: Problem-Solving Task
This task is intended as a classroom activity. Students pool the results of many repetitions of the random phenomenon (rolling dice) and compare their results to the theoretical expectation they develop by considering all possible outcomes of rolling two dice. This gives them a concrete example of what we mean by long term relative frequency.
Type: Problem-Solving Task
The purpose of this task is for students to compute the theoretical probability of a compound event. Teachers may wish to emphasize the distinction between theoretical and experimental probabilities for this problem. For students learning to distinguish between theoretical and experimental probability, it would be good to find an experimental probability either before or after students have calculated the theoretical probability.
Type: Problem-Solving Task
The purpose of this task is for students to compute the theoretical probability of a seating configuration. There are 24 possible configurations of the four friends at the table in this problem. Students could draw all 24 configurations to solve the problem but this is time consuming and so they should be encouraged to look for a more systematic method.
Type: Problem-Solving Task
Tutorials
This video demonstrates several examples of finding probability of random events.
Type: Tutorial
This video discusses the limits of probability as between 0 and 1.
Type: Tutorial
This video compares theoretical and experimantal probabilities and sources of possible discrepancy.
Type: Tutorial
This video demonstrates how to find the probability of a simple event.
Type: Tutorial
Watch the video as it predicts the number of times a spinner will land on a given outcome.
Type: Tutorial
This video demonstrates development and use of a probability model.
Type: Tutorial
This video explores how to create sample spaces as tree diagrams, lists and tables.
Type: Tutorial
This video shows how to use a sample space diagram to find probability.
Type: Tutorial
The video will show how to use a table to find the probability of a compound event.
Type: Tutorial
This video shows an example of using a tree diagram to find the probability of a compound event.
Type: Tutorial
Video/Audio/Animations
This 6-minute video provides an example of how to work with compound probability of independent events through the example of flipping a coin. If you flip a coin and it lands on heads, is the next flip more likely to be tails? Or are those events independent?
Type: Video/Audio/Animation
This 8-minute video provides an introduction to the concept of probability through the example of flipping a coin and rolling a die.
Type: Video/Audio/Animation
Virtual Manipulatives
In this activity, students adjust how many sections there are on a fair spinner then run simulated trials on that spinner as a way to develop concepts of probability. A table next to the spinner displays the theoretical probability for each color section of the spinner and records the experimental probability from the spinning trials. This activity allows students to explore the topics of experimental and theoretical probability by seeing them displayed side by side for the spinner they have created. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.
Type: Virtual Manipulative
This online manipulative allows the student to simulate placing marbles into a bag and finding the probability of pulling out certain combinations of marbles. This allows exploration of probabilities of multiple events as well as probability with and without replacement. The tabs above the applet provide access to supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.
Type: Virtual Manipulative
The students will play a classic game from a popular show. Through this they can explore the probability that the ball will land on each of the numbers and discover that more accurate results coming from repeated testing. The simulation can be adjusted to influence fairness and randomness of the results.
Type: Virtual Manipulative
This virtual manipulative allows one to make a random drawing box, putting up to 21 tickets with the numbers 0-11 on them. After selecting which tickets to put in the box, the applet will choose tickets at random. There is also an option which will show the theoretical probability for each ticket.
Type: Virtual Manipulative
Parent Resources
Problem-Solving Tasks
This task asks students to calculate probabilities using information presented in a two-way frequency table.
Type: Problem-Solving Task
The purpose of this task is to provide students with the opportunity to determine experimental probabilities by collecting data. The cylindrical objects used in this task typically have three different resting positions but not all of these may be equally likely and some may be extremely unlikely or impossible when the object is tossed. Furthermore, obtaining the probabilities of the outcomes is perhaps only possible through the use of long-run relative frequencies. This is because these cylinders do not have the same types of symmetries as objects that are often used as dice, such as cubes or tetrahedrons, where each outcome is equally likely.
Type: Problem-Solving Task
This resource involves a simple data-gathering activity which furnishes data that students organize into a table. They are then asked to refer to the data and determine the probability of various outcomes.
Type: Problem-Solving Task
As studies in statistics and probability unfold, students will not yet know the rules of probability for compound events. Thus, simulation is used to find an approximate answer to these questions. In fact, part b would be a challenge to students who do know the rules of probability, further illustrating the power of simulation to provide relatively easy approximate answers to wide-ranging problems.
Type: Problem-Solving Task
This task is intended as a classroom activity. Students pool the results of many repetitions of the random phenomenon (rolling dice) and compare their results to the theoretical expectation they develop by considering all possible outcomes of rolling two dice. This gives them a concrete example of what we mean by long term relative frequency.
Type: Problem-Solving Task
The purpose of this task is for students to compute the theoretical probability of a compound event. Teachers may wish to emphasize the distinction between theoretical and experimental probabilities for this problem. For students learning to distinguish between theoretical and experimental probability, it would be good to find an experimental probability either before or after students have calculated the theoretical probability.
Type: Problem-Solving Task
The purpose of this task is for students to compute the theoretical probability of a seating configuration. There are 24 possible configurations of the four friends at the table in this problem. Students could draw all 24 configurations to solve the problem but this is time consuming and so they should be encouraged to look for a more systematic method.
Type: Problem-Solving Task