LAFS.3.W.1.1Archived Standard

Write opinion pieces on topics or texts, supporting a point of view with reasons.
  1. Introduce the topic or text they are writing about, state an opinion, and create an organizational structure that lists reasons.
  2. Provide reasons that support the opinion.
  3. Use linking words and phrases (e.g., because, therefore, since, for example) to connect opinion and reasons.
  4. Provide a concluding statement or section.
General Information
Subject Area: English Language Arts
Grade: 3
Strand: Writing Standards
Idea: Level 2: Basic Application of Skills & Concepts
Date Adopted or Revised: 12/10
Date of Last Rating: 02/14
Status: State Board Approved - Archived

Related Courses

This benchmark is part of these courses.
5010010: English for Speakers of Other Languages-Elementary (Specifically in versions: 2014 - 2015, 2015 - 2022 (course terminated))
5010020: Basic Skills in Reading-K-2 (Specifically in versions: 2014 - 2015, 2015 - 2021, 2021 - 2024, 2024 and beyond (current))
5010030: Functional Basic Skills in Communications-Elementary (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
5021050: Social Studies Grade 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
5010044: Language Arts - Grade Three (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
7710014: Access Language Arts - Grade 3 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022, 2022 and beyond (current))
7721014: Access Social Studies - Grade 3 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plans

Sosu's Call:

This lesson helps children understand how they can be affected by the way others view them. The story is about Sosu, an African boy with a disability. The villagers didn't think he could do anything. Sosu used a drum to call for help and save the older people and children who were trapped by a storm. This lesson plan addresses the following literacy skills: asking and answering questions about key details and unknown words in a text, referring explicitly to the text for the answers; describing characters' traits, feelings, and motivations and how their actions contribute to the events in a story; and writing an opinion piece in response to a text-based question.

Type: Lesson Plan

What is Tourette Syndrome?:

This lesson is about a nine-year-old boy s personal experiences living with Tourette syndrome and how he gains the courage to tell his classmates about it. The author is 9-year old Dylan Peters. He provides clear information about Tourette Syndrome in a way that students can easily understand. This lesson plan addresses the following literacy skills: asking and answering questions to demonstrate understanding of a story, referring explicitly to the story as the basis for the answers; distinguishing their own point of view from that of the author of a text; and writing an opinion piece in response to a text-based question.

Type: Lesson Plan

Close Reading: Determining the Theme:

In this close reading lesson, students will read Tops & Bottoms, adapted by Janet Stevens, focusing on the lessons that the characters learn as a result of their actions throughout the text.

Type: Lesson Plan

Roaring for Figurative Language:

In this lesson, students will analyze song lyrics to determine the meanings of figurative language used throughout the lyrics. Students will determine the theme of the song and explain how the examples of figurative language help develop the theme. They will complete various graphic organizers and write an opinion piece to demonstrate their understanding of the skills.

Type: Lesson Plan

How Long is Your Music Lesson?:

In this Model Eliciting Activity, MEA, students will be required to rank musical instrument lesson packages based on the price, the number of minutes of practice each week, and the quality of the instructor.

Part of the task involves students figuring out the elapsed time of the lessons based on their start and stop times. They will also need to figure out the total weekly cost of the lessons based on the number of lessons offered per week and the cost of each lesson based on its length.

The twist will require students to determine whether or not to revise their ranking based on new information about the cost of instrument rentals per lesson and the class size of each package.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Reading is Fun!:

In this MEA, students will work in groups to rank books using the following criteria: price, genre, number of pages, reading level and a summary provided for each book. The students must calculate the price for a class set of each book by multiplying each price by 20 students. There is a budget of $100. Students are then given a new budget and a new criteria and asked to re-evaluate their decision.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

An Energetic Place to Live:

In this Model-Eliciting Activity (MEA), Sunny Land Developing is about to develop a new community in Florida. Students are needed to make suggestions for the company's choice of energy to integrate into the new homes. In this activity, students will review how people use electricity in their daily lives and learn about the differences between renewable and nonrenewable energy resources. Students will also be introduced to sound energy and how it is measured.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Having a Field Day:

In this MEA, students will rank t-shirt companies from the best price to the worst price by considering data such as purchase price, shipping fees, sizes, colors, etc. as well as notes regarding the amount of students enrolled. In the twist, students will be given information on additional requirements from the principal for specific shirt colors for each grade as well as the additional add-on of the school's logo (an elephant).

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Writing a Claim with The Tale of Despereaux:

In this partial reading of Kate DiCamillo's story The Tale of Despereaux students will meet a variety of charming, and not so charming, characters. Students will identify figurative language within the text and explain how it contributes to understanding the characters. At the end of the lesson, students will make a claim about one of the characters and support their claim using text evidence.

Type: Lesson Plan

Determining the Theme: A Reading of Faithful Elephants:

In this reading lesson, students will work with the teacher and in cooperative groups to read and comprehend Faithful Elephants. Through multiple readings, the students will determine the meaning of words using context clues, discuss questions from the text, and explain the theme of the story by writing an expository paragraph.

Type: Lesson Plan

How to Find a Princess: A Study of The Real Princess by Hans Christian Anderson:

This short text, "The Real Princess," originally told by Hans Christian Anderson, will require students to think deeply, make inferences based on text evidence and learn several new vocabulary words. Students will discuss the components of a fairy tale, play a vocabulary game, and compose an opinion piece of writing about the theme of the story.

Type: Lesson Plan

Lizard Lights:

Students will use a real-world problem solving situation to determine the best types of light bulbs to maintain an appropriate environment for a captive lizard. 

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Type: Lesson Plan

This is What I Think! Using Opinion Writing to Respond to the Text My Secret Bully by Trudy Ludwig:

For this lesson, students will read an excerpt from the text My Secret Bully by Trudy Ludwig. In response to a character's actions in the story, students will work to produce an opinion writing piece using character perspectives as text evidence to support their opinion. This is the second in a series of three lessons using the text My Secret Bully.

Type: Lesson Plan

Dining Dilemma!:

In this Model Eliciting Activity, MEA, students will compare different nutritional content of chicken nuggets from many restaurants presented in bar graphs. They will factor in the calories, total fat, and sodium information about the nuggets to create a procedure for ranking the nuggets from healthiest to least healthy.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Pick a Pet:

In this MEA, students will rank pets from most family-friendly to least family-friendly by considering data such as purchase price, cost to feed, cleanliness, etc. as well as notes regarding the physical description of the pet. In the twist, students will be given information on additional pets as well as information on cleanliness and life expectancy. Students may need to make trade-offs in regards to cost to adopt, feed, and house along with life expectancy, ease of clean up, etc.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Kites for Education MEA:

Kites for Education is a Modeling Eliciting Activity which presents students with an engineering challenge in which they must analyze data sets and develop a procedure for ranking different kite models. The product ranked as best by the students will hypothetically be sold to customers and the profit used to purchase school textbooks and supplies for school age children impacted by Haiti's devastating earthquake.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Dream Skates:

In this Model-Eliciting Activity (MEA), a student engineering team is asked by a wheel manufacturer to investigate and develop a plan to select the best model of roller blades.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Who's Who?:

Students will collect evidence from informational texts and the internet to show the importance of a historical figure. Students will conduct research, write an expository paragraph, and provide and receive peer feedback on their writing.

Type: Lesson Plan

Model Eliciting Activity (MEA) STEM Lesson

Physical Science Unit: Properties Lesson 20 Model Eliciting Activity: Animal Habitats:

In this MEA, students will have the opportunity to apply what they learned about physical properties to a realistic problem. Students will be asked to design a habitat for an elephant or gorilla that will be housed at the CPALMS Rehabilitation and Conservation Center. Students will need to describe the physical properties (color, shape, texture, hardness) of the features they selected for the habitat while explaining the rationale behind their design choices. In the optional twist, students will need to modify their design to accommodate a senior elephant or gorilla. 

This is a lesson in the Grade 3 Physical Science Unit on Properties. This is a themed unit of SaM-1's adventures at the CPALMS Rehabilitation and Conservation Center.  To see all the lessons in the unit please visit https://www.cpalms.org/page818.aspx .

Type: Model Eliciting Activity (MEA) STEM Lesson

Original Student Tutorials

Lesson 20 Video MEA Animal Habitats Part 2:

In this video, SaM-1 introduces a part 2 twist to the Model Eliciting Activity (MEA) challenge. In the first video, students were asked to design a habitat for an elephant or gorilla that will be housed at the CPALMS Rehabilitation and Conservation Center. In this twist, students will need to modify their design to accommodate a senior elephant or gorilla.

Type: Original Student Tutorial

Lesson 20 Video: MEA Animal Habitats:

In this video, SaM-1 introduces a Model Eliciting Activity (MEA) challenge for the students. This video provides habitat information to help the students use the knowledge they gained throughout the unit. Students are asked to design a habitat for an elephant or gorilla that will be housed at the CPALMS Rehabilitation and Conservation Center. Students will need to describe the physical properties (color, shape, texture, hardness) of the features they selected for the habitat while explaining the rationale behind their design choices.

In the optional twist, students will need to modify their design to accommodate a senior elephant or gorilla. The optional twist also has a SaM-1 video to introduce the twist challenge.

Type: Original Student Tutorial

Bon Voyage!:

By the end of this tutorial, you will be able to state your opinion, organize your ideas, and list relevant reasons for your opinion.

Type: Original Student Tutorial

STEM Lessons - Model Eliciting Activity

An Energetic Place to Live:

In this Model-Eliciting Activity (MEA), Sunny Land Developing is about to develop a new community in Florida. Students are needed to make suggestions for the company's choice of energy to integrate into the new homes. In this activity, students will review how people use electricity in their daily lives and learn about the differences between renewable and nonrenewable energy resources. Students will also be introduced to sound energy and how it is measured.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Dining Dilemma!:

In this Model Eliciting Activity, MEA, students will compare different nutritional content of chicken nuggets from many restaurants presented in bar graphs. They will factor in the calories, total fat, and sodium information about the nuggets to create a procedure for ranking the nuggets from healthiest to least healthy.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Dream Skates:

In this Model-Eliciting Activity (MEA), a student engineering team is asked by a wheel manufacturer to investigate and develop a plan to select the best model of roller blades.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Having a Field Day:

In this MEA, students will rank t-shirt companies from the best price to the worst price by considering data such as purchase price, shipping fees, sizes, colors, etc. as well as notes regarding the amount of students enrolled. In the twist, students will be given information on additional requirements from the principal for specific shirt colors for each grade as well as the additional add-on of the school's logo (an elephant).

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

How Long is Your Music Lesson?:

In this Model Eliciting Activity, MEA, students will be required to rank musical instrument lesson packages based on the price, the number of minutes of practice each week, and the quality of the instructor.

Part of the task involves students figuring out the elapsed time of the lessons based on their start and stop times. They will also need to figure out the total weekly cost of the lessons based on the number of lessons offered per week and the cost of each lesson based on its length.

The twist will require students to determine whether or not to revise their ranking based on new information about the cost of instrument rentals per lesson and the class size of each package.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Kites for Education MEA:

Kites for Education is a Modeling Eliciting Activity which presents students with an engineering challenge in which they must analyze data sets and develop a procedure for ranking different kite models. The product ranked as best by the students will hypothetically be sold to customers and the profit used to purchase school textbooks and supplies for school age children impacted by Haiti's devastating earthquake.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Lizard Lights:

Students will use a real-world problem solving situation to determine the best types of light bulbs to maintain an appropriate environment for a captive lizard. 

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Pick a Pet:

In this MEA, students will rank pets from most family-friendly to least family-friendly by considering data such as purchase price, cost to feed, cleanliness, etc. as well as notes regarding the physical description of the pet. In the twist, students will be given information on additional pets as well as information on cleanliness and life expectancy. Students may need to make trade-offs in regards to cost to adopt, feed, and house along with life expectancy, ease of clean up, etc.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx

Reading is Fun!:

In this MEA, students will work in groups to rank books using the following criteria: price, genre, number of pages, reading level and a summary provided for each book. The students must calculate the price for a class set of each book by multiplying each price by 20 students. There is a budget of $100. Students are then given a new budget and a new criteria and asked to re-evaluate their decision.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Original Student Tutorials for Language Arts - Grades K-5

Bon Voyage!:

By the end of this tutorial, you will be able to state your opinion, organize your ideas, and list relevant reasons for your opinion.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Original Student Tutorials

Lesson 20 Video MEA Animal Habitats Part 2:

In this video, SaM-1 introduces a part 2 twist to the Model Eliciting Activity (MEA) challenge. In the first video, students were asked to design a habitat for an elephant or gorilla that will be housed at the CPALMS Rehabilitation and Conservation Center. In this twist, students will need to modify their design to accommodate a senior elephant or gorilla.

Type: Original Student Tutorial

Lesson 20 Video: MEA Animal Habitats:

In this video, SaM-1 introduces a Model Eliciting Activity (MEA) challenge for the students. This video provides habitat information to help the students use the knowledge they gained throughout the unit. Students are asked to design a habitat for an elephant or gorilla that will be housed at the CPALMS Rehabilitation and Conservation Center. Students will need to describe the physical properties (color, shape, texture, hardness) of the features they selected for the habitat while explaining the rationale behind their design choices.

In the optional twist, students will need to modify their design to accommodate a senior elephant or gorilla. The optional twist also has a SaM-1 video to introduce the twist challenge.

Type: Original Student Tutorial

Bon Voyage!:

By the end of this tutorial, you will be able to state your opinion, organize your ideas, and list relevant reasons for your opinion.

Type: Original Student Tutorial

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.