A. A working definition of matter is that it takes up space, has mass, and has measurable properties. Matter is comprised of atomic, subatomic, and elementary particles.
B. Electrons are key to defining chemical and some physical properties, reactivity, and molecular structures. Repeating (periodic) patterns of physical and chemical properties occur among elements that define groups of elements with similar properties. The periodic table displays the repeating patterns, which are related to the atom's outermost electrons. Atoms bond with each other to form compounds.
C. In a chemical reaction, one or more reactants are transformed into one or more new products. Many factors shape the nature of products and the rates of reaction.
D. Carbon-based compounds are building-blocks of known life forms on earth and numerous useful natural and synthetic products.
Related Courses
Related Access Points
Related Resources
Formative Assessment
Lesson Plans
Video/Audio/Animation
Virtual Manipulatives
Student Resources
Video/Audio/Animation
- Explain the concept of concentration
- Explain the effect of concentration changes on colors of solutions
- Demonstrate the effect of changing the amount of solute, or solvent, or both on the concentration of the solution
- Identify a saturated solution
Type: Video/Audio/Animation
Virtual Manipulatives
This virtual manipulative will help you understand the process of titration, which is a neutralization reaction that is performed in order to determine an unknown concentration of acid and base. With this simulation, you will be able to calculate the moles of the acid with the understanding that the moles of acid will be equal to the moles of base at the equivalence point.
Type: Virtual Manipulative
This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
Type: Virtual Manipulative
Parent Resources
Formative Assessment
This activity allows students to practice balancing chemical equations. It has three difficulty levels, and the students can practice with 5, 10, or 15 questions.
Type: Formative Assessment
Video/Audio/Animation
- Explain the concept of concentration
- Explain the effect of concentration changes on colors of solutions
- Demonstrate the effect of changing the amount of solute, or solvent, or both on the concentration of the solution
- Identify a saturated solution
Type: Video/Audio/Animation
Virtual Manipulatives
This virtual manipulative will help you understand the process of titration, which is a neutralization reaction that is performed in order to determine an unknown concentration of acid and base. With this simulation, you will be able to calculate the moles of the acid with the understanding that the moles of acid will be equal to the moles of base at the equivalence point.
Type: Virtual Manipulative
This virtual manipulative will help the learners to recognize the limiting reactant effect in a reaction. Limiting reactants can be explained from the extent to which reactions that involve more than one reactant can produce products depends on the quantities of those reactants combined. In most cases, one reactant will be totally consumed while the other reactants remain in excess.
Type: Virtual Manipulative
The relationship of numbers of particles on the atomic scale to measurements made on the bulk scale uses the concept of the mole. Using this simulation, the learner will be able to explore the relationship between mass, moles, molecules and atoms.
Type: Virtual Manipulative
This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
Type: Virtual Manipulative