Apply the mole concept and the law of conservation of mass to calculate quantities of chemicals participating in reactions.
Course Number1111 |
Course Title222 |
2003340: | Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003350: | Chemistry 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002420: | Integrated Science 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002430: | Integrated Science 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003800: | Florida's Preinternational Baccalaureate Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
7920011: | Access Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current)) |
2002425: | Integrated Science 2 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
2003345: | Chemistry 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
Name |
Description |
How Big Is a Mole? Do We Really Comprehend Avogadro’s Number? | The unit “mole” is used in chemistry as a counting unit for measuring the amount of something. One mole of something has 6.02×1023 units of that thing. The magnitude of the number 6.02×1023 is challenging to imagine. The goal of this lesson is for students to understand just how many particles Avogadro's Number truly represents, or, how big is a mole. This lesson is meant for students currently enrolled in a first or second year chemistry course. This lesson is designed to be completed within one approximately 1 hour class; however, completion of optional activities 4 and 5 may require a longer class period or part of a second class period. |
Converting from moles to mass (grams) | Lesson on finding molar mass and converting from moles to mass (grams) for pure substances (elements, compounds and molecules) using the periodic table and the molar road map. |
What's In My Water??? | Through an engaging introductory lesson, laboratory, and virtual simulation, students will be prepared to perform a guided inquiry laboratory investigating the amount of sodium sulfate present in an unknown solution. Students will learn the importance of separation techniques such as filtration, determine which reactions form precipitates, and grow in their knowledge of stoichiometry through gravimetric analysis. |
Mass Mole Relationships: A Statistical Approach To Accuracy and Precision | The lesson is a laboratory-based activity involving measurement, accuracy and precision, stoichiometry and a basic statistical analysis of data using a scatter plot, linear equation, and linear regression (line of best fit). The lesson includes teacher-led discussions with student participation and laboratory-based group activities. |
Using Acid/Base Neutralization to Study Endothermic vs Exothermic Reactions and Stoichiometry | In this lesson, students will experimentally determine whether an acid/base neutralization reaction is endothermic or exothermic. They will also use their results to identify the limiting reactant at various times in the process and calculate the concentration of one of the reactants. |
Mole Relay | To be successful in chemistry, students need a solid foundation in solving multi-step (sequential) problems. This activity uses inexpensive materials to strengthening students understanding of stoichiometry problems during an engaging group competition. A student-centered approach develops the reasoning skills needed for scientific thinking. Each student assumes a different role as they complete work in a complex stoichiometry problem. Students may receive immediate feedback from their teammates so that success is felt by all learners. |
Making Menus | Students can organize information about a chemical substance into a menu that will help them establish their thoughts when converting using the concept of the mole. Ordering off their menu narrows the information to only what is relevant and allows them to easily set up factor label conversions. |
Determining the Empirical Formula of Hydrates | Students will apply the mole concept and the law of conservation of mass to determine the empirical formula of a hydrate. Students will also use data from their experiment to understand the concept of mole ratios, formulas and predicting products from reactions. Students will interpret formula representation of compounds and understand their percent composition. |
Name |
Description |
Titrations | This virtual manipulative will help you understand the process of titration, which is a neutralization reaction that is performed in order to determine an unknown concentration of acid and base. With this simulation, you will be able to calculate the moles of the acid with the understanding that the moles of acid will be equal to the moles of base at the equivalence point. |
Limiting Reactants | This virtual manipulative will help the learners to recognize the limiting reactant effect in a reaction. Limiting reactants can be explained from the extent to which reactions that involve more than one reactant can produce products depends on the quantities of those reactants combined. In most cases, one reactant will be totally consumed while the other reactants remain in excess.
|
Compounds, Molecules and the Mole | The relationship of numbers of particles on the atomic scale to measurements made on the bulk scale uses the concept of the mole. Using this simulation, the learner will be able to explore the relationship between mass, moles, molecules and atoms.
|
Beer's Law Lab | This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer. You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
|
Name |
Description |
Titrations: | This virtual manipulative will help you understand the process of titration, which is a neutralization reaction that is performed in order to determine an unknown concentration of acid and base. With this simulation, you will be able to calculate the moles of the acid with the understanding that the moles of acid will be equal to the moles of base at the equivalence point. |
Beer's Law Lab: | This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer. You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
|
Name |
Description |
Titrations: | This virtual manipulative will help you understand the process of titration, which is a neutralization reaction that is performed in order to determine an unknown concentration of acid and base. With this simulation, you will be able to calculate the moles of the acid with the understanding that the moles of acid will be equal to the moles of base at the equivalence point. |
Limiting Reactants: | This virtual manipulative will help the learners to recognize the limiting reactant effect in a reaction. Limiting reactants can be explained from the extent to which reactions that involve more than one reactant can produce products depends on the quantities of those reactants combined. In most cases, one reactant will be totally consumed while the other reactants remain in excess.
|
Compounds, Molecules and the Mole: | The relationship of numbers of particles on the atomic scale to measurements made on the bulk scale uses the concept of the mole. Using this simulation, the learner will be able to explore the relationship between mass, moles, molecules and atoms.
|
Beer's Law Lab: | This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer. You can explore concepts in many ways including:
- Describe the relationships between volume and amount of solute to solution concentration.
- Explain qualitatively the relationship between solution color and concentration.
- Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
- Calculate the concentration of solutions in units of molarity (mol/L).
- Design a procedure for creating a solution of a given concentration.
- Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
- Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
- Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
- Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?
|