Related Benchmarks
Related Access Points
Access Points
Related Resources
Formative Assessments
Lesson Plans
Original Student Tutorials
Perspectives Video: Expert
Perspectives Video: Professional/Enthusiast
Perspectives Video: Teaching Idea
Presentation/Slideshow
Problem-Solving Tasks
Text Resource
Tutorials
Student Resources
Original Student Tutorials
Use the Pythagorean Theorem to find the legs of a right triangle in mathematical and real worlds contexts in this interactive tutorial.
This is part 3 in a 3-part series. Click below to explore the other tutorials in the series.
Type: Original Student Tutorial
Use the Pythagorean Theorem to find the hypotenuse of a right triangle in mathematical and real worlds contexts in this interactive tutorial.
This is part 2 in a 3-part series. Click below to explore the other tutorials in the series.
Type: Original Student Tutorial
Learn what the Pythagorean Theorem and its converse mean, and what Pythagorean Triples are in this interactive tutorial.
This is part 1 in a 3-part series. Click below to explore the other tutorials in the series.
Type: Original Student Tutorial
Explore complementary and supplementary angles around the playground with Jacob in this interactive tutorial.
This is Part 1 in a two-part series. Click HERE to open Playground Angles: Part 2.
Type: Original Student Tutorial
Help Jacob write and solve equations to find missing angle measures based on the relationship between angles that sum to 90 degrees and 180 degrees in this playground-themed, interactive tutorial.
This is Part 2 in a two-part series. Click HERE to open Playground Angles: Part 1.
Type: Original Student Tutorial
Apply the Pythagorean Theorem to solve mathematical and real-rorld problems in this interactive tutorial.
Type: Original Student Tutorial
Perspectives Video: Expert
Don't be a square! Learn about how even grids help archaeologists track provenience!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiast
Find out how math and technology can help you (try to) get away from civilization.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
Students use interior and exterior angles to to verify attributes of an octagon and square. Students are given a tile pattern involving congruent regular octagons and squares.
Type: Problem-Solving Task
This is a foundational geometry task designed to provide a route for students to develop some fundamental geometric properties that may seem rather obvious at first glance. In this case, the fundamental property in question is that the shortest path from a point to a line meets the line at a right angle which is crucial for many further developments in the subject.
Type: Problem-Solving Task
The purpose of this task is to lead students through an algebraic approach to a well-known result from classical geometry, namely, that a point X is on the circle of diameter AB whenever angle AXB is a right angle.
Type: Problem-Solving Task
In this problem, we considered SSA. The triangle congruence criteria, SSS, SAS, ASA, all require three pieces of information. It is interesting, however, that not all three pieces of information about sides and angles are sufficient to determine a triangle up to congruence.
Type: Problem-Solving Task
In this resource, students will determine the volumes of three different shaped drinking glasses. They will need prior knowledge with volume formulas for cylinders, cones, and spheres, as well as experience with equation solving, simplifying square roots, and applying the Pythagorean theorem.
Type: Problem-Solving Task
This task provides an opportunity to apply the Pythagorean theorem to multiple triangles in order to determine the length of the hypotenuse; the converse of the Pythagorean theorem is also required in order to conclude that certain angles are right angles.
Type: Problem-Solving Task
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Type: Problem-Solving Task
The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.
Type: Problem-Solving Task
This task is ideally suited for instruction purposes where students can take their time and develop several of the standards, as the mathematical content is directly related to, but somewhat exceeds, the content of the standard on sums of angles in triangles. Careful analysis of the angles requires students to construct valid arguments using abstract and quantitative reasoning. Producing the picture in part (c) helps students identify a common mathematical argument repeated multiple times. Students may use pattern blocks to develop the intuition for decomposing the hexagon into triangles.
Type: Problem-Solving Task
Students need to reason as to how they can use the Pythagorean Theorem to find the distances ran by Ben Watson and Champ Bailey. The focus here should not be on who ran a greater distance but on seeing how to set up right triangles to apply the Pythagorean Theorem to this problem. Students must use their measurement skills and make reasonable estimates to set up triangles and correctly apply the Theorem.
Type: Problem-Solving Task
Tutorials
In this video, we find missing angle measures from a variety of examples.
Type: Tutorial
The video will use algebra to find the measure of two angles whose sum equals 90 degrees, better known as complementary angles.
Type: Tutorial
Watch as we use algebra to find the measure of two complementary angles.
Type: Tutorial
Watch as we use algebra to find the measure of supplementary angles, whose sum is 180 degrees.
Type: Tutorial
This video uses knowledge of vertical angles to solve for the variable and the angle measures.
Type: Tutorial
This video uses facts about supplementary and adjacent angles to introduce vertical angles.
Type: Tutorial
This video demonstrates solving a word problem involving angle measures.
Type: Tutorial
This video discusses constructing a right isosceles triangle with given constraints and deciding if the triangle is unique.
Type: Tutorial
This video demonstrates drawing a triangle when the side lengths are given.
Type: Tutorial
The video will demonstrate the difference between supplementary angles and complementary angles, by using the given measurements of angles.
Type: Tutorial
Parent Resources
Perspectives Video: Expert
Don't be a square! Learn about how even grids help archaeologists track provenience!
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiast
Find out how math and technology can help you (try to) get away from civilization.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
Students use interior and exterior angles to to verify attributes of an octagon and square. Students are given a tile pattern involving congruent regular octagons and squares.
Type: Problem-Solving Task
This is a foundational geometry task designed to provide a route for students to develop some fundamental geometric properties that may seem rather obvious at first glance. In this case, the fundamental property in question is that the shortest path from a point to a line meets the line at a right angle which is crucial for many further developments in the subject.
Type: Problem-Solving Task
The purpose of this task is to lead students through an algebraic approach to a well-known result from classical geometry, namely, that a point X is on the circle of diameter AB whenever angle AXB is a right angle.
Type: Problem-Solving Task
In this problem, we considered SSA. The triangle congruence criteria, SSS, SAS, ASA, all require three pieces of information. It is interesting, however, that not all three pieces of information about sides and angles are sufficient to determine a triangle up to congruence.
Type: Problem-Solving Task
In this resource, students will determine the volumes of three different shaped drinking glasses. They will need prior knowledge with volume formulas for cylinders, cones, and spheres, as well as experience with equation solving, simplifying square roots, and applying the Pythagorean theorem.
Type: Problem-Solving Task
This task provides an opportunity to apply the Pythagorean theorem to multiple triangles in order to determine the length of the hypotenuse; the converse of the Pythagorean theorem is also required in order to conclude that certain angles are right angles.
Type: Problem-Solving Task
The purpose of this task is for students to use the Pythagorean Theorem as a problem-solving tool to calculate the distance between two points on a grid. In this case the grid is also a map, and the street names can be viewed as defining a coordinate system (although the coordinate system is not needed to solve the problem).
Type: Problem-Solving Task
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Type: Problem-Solving Task
The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose. The teacher may wish to have students first brainstorm for methods of showing that a quadrilateral is rectangle (before presenting them with the explicit coordinates of the rectangle for this problem): ideally, they can then divide into groups and get to work straightaway once presented with the coordinates of the quadrilateral for this problem.
Type: Problem-Solving Task
This task is ideally suited for instruction purposes where students can take their time and develop several of the standards, as the mathematical content is directly related to, but somewhat exceeds, the content of the standard on sums of angles in triangles. Careful analysis of the angles requires students to construct valid arguments using abstract and quantitative reasoning. Producing the picture in part (c) helps students identify a common mathematical argument repeated multiple times. Students may use pattern blocks to develop the intuition for decomposing the hexagon into triangles.
Type: Problem-Solving Task
The purpose of this task is for students to use the Pythagorean Theorem to find the unknown side-lengths of a trapezoid in order to determine the area. This problem will require creativity and persistence as students must decompose the given trapezoid into other polygons in order to find its area.
Type: Problem-Solving Task
Three right triangles surround a shaded triangle; together they form a rectangle measuring 12 units by 14 units. The figure used shows some of the dimensions but is not drawn to scale. Apply the Pythagorean Theorem to prove whether the figure is a right triangle.
Type: Problem-Solving Task
This problem is part of a very rich tradition of problems looking to maximize the area enclosed by a shape with fixed perimeter. Only three shapes are considered here because the problem is difficult for more irregular shapes. For example, of all triangles, the one with fixed perimeter P and largest area is the equilateral triangle whose side lengths are all P3 but this is difficult to show because it is not easy to find the area of triangle in terms of the three side lengths (though Heron's formula accomplishes this). Nor is it simple to compare the area of two triangles with equal perimeter without knowing their individual areas. For quadrilaterals, a similar problem arises: showing that of all rectangles with perimeter P the one with the largest area is the square whose side lengths are P4 is a good problem which students should think about. But comparing a square to an irregularly shaped quadrilateral of equal perimeter will be difficult.
Type: Problem-Solving Task
Students need to reason as to how they can use the Pythagorean Theorem to find the distances ran by Ben Watson and Champ Bailey. The focus here should not be on who ran a greater distance but on seeing how to set up right triangles to apply the Pythagorean Theorem to this problem. Students must use their measurement skills and make reasonable estimates to set up triangles and correctly apply the Theorem.
Type: Problem-Solving Task