Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.
Related Standards
Related Access Points
Access Points
Related Resources
Educational Games
Formative Assessments
Lesson Plans
Original Student Tutorials
Problem-Solving Tasks
Tutorials
Virtual Manipulative
Student Resources
Original Student Tutorials
Learn about equivalent 10ths and 100ths and how to calculate these equivalent fractions at the fair in this interactive tutorial.
Type: Original Student Tutorial
Learn how to locate decimals on a number line and compare decimals to save the Decis from a wizard's spell in this interactive tutorial.
Type: Original Student Tutorial
Help Rich escape Deci Land by learning how to write decimals that are related to fractions with denominators of 10 and 100 in this interactive tutorial.
Type: Original Student Tutorial
Educational Games
Test your fraction skills by answering questions on this site. This quiz asks you to simplify fractions, convert fractions to decimals and percentages, and answer algebra questions involving fractions. You can even choose difficulty level, question types, and time limit.
Type: Educational Game
This interactive Flash applet has students match fractions with their equivalent one- or two-place decimals. Students have a chance to correct errors until all matches are made.
Type: Educational Game
Problem-Solving Tasks
The purpose of this task is adding fractions with a focus on tenths and hundredths.
Type: Problem-Solving Task
The purpose of this task is for students to finish the equations to make true statements. Parts (a) and (b) have the same solution, which emphasizes that the order in which we add doesn't matter (because addition is commutative), while parts (c) and (d) emphasize that the position of a digit in a decimal number is critical. The student must really think to encode the quantity in positional notation. In parts (e), (f), and (g), the base-ten units in 14 hundredths are bundled in different ways. In part (e), "hundredths" are thought of as units: 14 things = 10 things + 4 things. Part (h) addresses the notion of equivalence between hundredths and tenths.
Type: Problem-Solving Task
Students may not articulate every detail, but the basic idea for a case like the one shown here is that when you have equivalent fractions, you have just cut the pieces that represent the fraction into more but smaller pieces. Explaining fraction equivalences at higher grades can be a bit more involved (e.g. 6/8=9/12), but it can always be framed as subdividing the same quantity in different ways.
Type: Problem-Solving Task
The purpose of this task is for students to show they understand the connection between fraction and decimal notation by writing the same numbers both ways. Comparing and contrasting the two solutions shown below shows why decimal notation can be confusing. The first solution shows the briefest way to represent each number, and the second solution makes all the zeros explicit.
Type: Problem-Solving Task
The purpose of this task is to help students gain a better understanding of fractions through the use of dimes and pennies.
Type: Problem-Solving Task
Each part of this task highlights a slightly different aspect of place value as it relates to decimal notation. More than simply being comfortable with decimal notation, the point is for students to be able to move fluidly between and among the different ways that a single value can be represented and to understand the relative size of the numbers in each place.
Type: Problem-Solving Task
Tutorials
The Khan Academy tutorial video presents a visual fraction model for adding 3/10 + 7/100 .
Type: Tutorial
In this Khan Academy tutorial video two decimals are compared using grid diagrams.
Type: Tutorial
In this Khan Academy video decimals are written and spoken in words.
Type: Tutorial
The Khan Academy video uses grid diagrams and number-line representations to say and write equivalent decimals and fractions.
Type: Tutorial
The Khan Academy video illustrates how to determine and write the decimal represented by shaded grids.
Type: Tutorial
In this Khan Academy video a fraction is converted from tenths to hundredths using grid diagrams.
Type: Tutorial
This tutorial for student audiences will provide a basic introduction to decimals. The tutorial presents a decimal as another way to represent a fraction. Students will be able to navigate the teaching portion of the tutorial at their own pace and test their understanding after each step of the lesson with a "Try This" section. The "Try This" section will monitor students answers and self-check by a right answer gaining an orange circle and a wrong answer graying out. Some "Try This" sections will read the decimal to the students as well.
Type: Tutorial
Parent Resources
Problem-Solving Tasks
The purpose of this task is adding fractions with a focus on tenths and hundredths.
Type: Problem-Solving Task
The purpose of this task is for students to finish the equations to make true statements. Parts (a) and (b) have the same solution, which emphasizes that the order in which we add doesn't matter (because addition is commutative), while parts (c) and (d) emphasize that the position of a digit in a decimal number is critical. The student must really think to encode the quantity in positional notation. In parts (e), (f), and (g), the base-ten units in 14 hundredths are bundled in different ways. In part (e), "hundredths" are thought of as units: 14 things = 10 things + 4 things. Part (h) addresses the notion of equivalence between hundredths and tenths.
Type: Problem-Solving Task
Students may not articulate every detail, but the basic idea for a case like the one shown here is that when you have equivalent fractions, you have just cut the pieces that represent the fraction into more but smaller pieces. Explaining fraction equivalences at higher grades can be a bit more involved (e.g. 6/8=9/12), but it can always be framed as subdividing the same quantity in different ways.
Type: Problem-Solving Task
The purpose of this task is for students to show they understand the connection between fraction and decimal notation by writing the same numbers both ways. Comparing and contrasting the two solutions shown below shows why decimal notation can be confusing. The first solution shows the briefest way to represent each number, and the second solution makes all the zeros explicit.
Type: Problem-Solving Task
The purpose of this task is to help students gain a better understanding of fractions through the use of dimes and pennies.
Type: Problem-Solving Task
Each part of this task highlights a slightly different aspect of place value as it relates to decimal notation. More than simply being comfortable with decimal notation, the point is for students to be able to move fluidly between and among the different ways that a single value can be represented and to understand the relative size of the numbers in each place.
Type: Problem-Solving Task
Tutorial
This tutorial for student audiences will provide a basic introduction to decimals. The tutorial presents a decimal as another way to represent a fraction. Students will be able to navigate the teaching portion of the tutorial at their own pace and test their understanding after each step of the lesson with a "Try This" section. The "Try This" section will monitor students answers and self-check by a right answer gaining an orange circle and a wrong answer graying out. Some "Try This" sections will read the decimal to the students as well.
Type: Tutorial