MA.912.DP.6.7

Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values and standard deviations. Evaluate and compare strategies on the basis of the calculated expected values and standard deviations.

Clarifications

Clarification 1: Instruction includes the relationship between expected values and standard deviations on one hand and the rewards and risks on the other hand.

Clarification 2: Instruction includes reducing risk through diversification.

General Information
Subject Area: Mathematics (B.E.S.T.)
Grade: 912
Strand: Data Analysis and Probability
Date Adopted or Revised: 08/20
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
1210300: Probability and Statistics Honors (Specifically in versions: 2014 - 2015, 2015 - 2019, 2019 - 2022, 2022 - 2024, 2024 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plans

In terms of soccer: Nike or Adidas?:

In this lesson, students calculate and interpret the standard deviation for two data sets. They will measure the air pressure for two types of soccer balls. This lesson can be used as a hands-on activity or completed without measuring using sample data.

Type: Lesson Plan

If The Shoe Fits – A "Normal" Cinderella Story:

Using a normal distribution manipulative and a calculator, students will explore the normal distribution curve to determine the area between each standard deviation from the mean using the empirical rule. Students will use the mean and standard deviation to predict outcomes in real-world situations and finally answer the age old question: What size was Cinderella's glass slipper?

Type: Lesson Plan

Sweet Statistics - A Candy Journey:

Students will sort pieces of candy by color and then calculate statistical information such as mean, median, mode, interquartile range, and standard deviation. They will also create an Excel spreadsheet with the candy data to generate pie charts and column charts. Finally, they will compare experimental data to theoretical data and explain the differences between the two. This is intended to be an exercise for an Algebra 1 class. Students will need at least 2 class periods to sort their candy, make the statistical calculations, and create the charts in Excel.

Type: Lesson Plan

Proposed Budgets:

In this Model Eliciting Activity (MEA), students will analyze federal budget data to propose strategic allocations using mathematical skills like expected value calculations and data normalization to justify their recommendations.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Phalangelpodscribitis? - Analysis with Probability:

In this Model Eliciting Activity, MEA students will be presented with seven (7) medications that will help cure an individual of Phalangelpodscribitis (a fictitious ailment). Students will be given the effectiveness of each medication, the cost to patients with and without insurance, and the possible side effects of each. Each team will be tasked with ranking these medications for a client to help decide the pros and cons of the medications that should be used in treating Phalangelpodscribitis (PPS).

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Perspectives Video: Expert

How Math Models Help Insurance Companies After a Hurricane Hits:

Hurricanes can hit at any time! How do insurance companies use math and weather data to help to restore the community?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

STEM Lessons - Model Eliciting Activity

Phalangelpodscribitis? - Analysis with Probability:

In this Model Eliciting Activity, MEA students will be presented with seven (7) medications that will help cure an individual of Phalangelpodscribitis (a fictitious ailment). Students will be given the effectiveness of each medication, the cost to patients with and without insurance, and the possible side effects of each. Each team will be tasked with ranking these medications for a client to help decide the pros and cons of the medications that should be used in treating Phalangelpodscribitis (PPS).

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Proposed Budgets:

In this Model Eliciting Activity (MEA), students will analyze federal budget data to propose strategic allocations using mathematical skills like expected value calculations and data normalization to justify their recommendations.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.