MA.912.T.3.3

Solve and graph mathematical and real-world problems that are modeled with trigonometric functions. Interpret key features and determine constraints in terms of the context.

Clarifications

Clarification 1: Key features are limited to domain; range; intercepts; intervals where the function is increasing, decreasing, positive or negative; relative maximums and minimums; symmetry; end behavior; periodicity; midline; amplitude; shift(s) and asymptotes.

Clarification 2: Instruction includes representing the domain, range and constraints with inequality notation, interval notation or set-builder notation.

Clarification 3: Instruction includes using technology when appropriate.

General Information
Subject Area: Mathematics (B.E.S.T.)
Grade: 912
Strand: Trigonometry
Date Adopted or Revised: 08/20
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
1202340: Precalculus Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
1209315: Mathematics for ACT and SAT (Specifically in versions: 2022 - 2024, 2024 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Formative Assessment

Elevation Along a Trail:

Students are asked to interpret key features of a graph (symmetry) in the context of a problem situation.

Type: Formative Assessment

Lesson Plan

Ferris Wheel:

This lesson is intended to help you assess how well students are able to:

  • Model a periodic situation, the height of a person on a Ferris wheel, using trigonometric functions.
  • Interpret the constants a, b, c in the formula h = a + b cos ct in terms of the physical situation, where h is the height of the person above the ground and t is the elapsed time.

Type: Lesson Plan

Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Problem-Solving Tasks

The Lighthouse Problem:

This problem asks students to model phenomena on the surface of the earth by examining the visibility of the lamp in a lighthouse from a boat.

Type: Problem-Solving Task

As the Wheel Turns:

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task

MFAS Formative Assessments

Elevation Along a Trail:

Students are asked to interpret key features of a graph (symmetry) in the context of a problem situation.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Problem-Solving Tasks

The Lighthouse Problem:

This problem asks students to model phenomena on the surface of the earth by examining the visibility of the lamp in a lighthouse from a boat.

Type: Problem-Solving Task

As the Wheel Turns:

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.

Problem-Solving Tasks

The Lighthouse Problem:

This problem asks students to model phenomena on the surface of the earth by examining the visibility of the lamp in a lighthouse from a boat.

Type: Problem-Solving Task

As the Wheel Turns:

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task