Related Benchmarks
Related Access Points
Access Points
Select the effect (up, down, left, or right) on the graph of a given function after replacing f(x) by f(x) + k and f(x + k) for specific values of k.
Identify the effect on the graph of a given function of two or more transformations defined by adding a real number to the x- or y-values.
Given the graph of a given function after replacing f(x) by f(x) + k and f(x + k), kf(c), for specific values of k select the type of transformation and find the value of the real number k.
Related Resources
Formative Assessments
Lesson Plans
Original Student Tutorials
Perspectives Video: Teaching Idea
Problem-Solving Task
Student Resources
Original Student Tutorials
Visualize the effect of using a value of k in both kf(x) or f(kx) when k is greater than zero in this interactive tutorial.
Type: Original Student Tutorial
Learn how reflections of a function are created and tied to the value of k in the mapping of f(x) to -1f(x) in this interactive tutorial.
Type: Original Student Tutorial
Explore translations of functions on a graph that are caused by k in this interactive tutorial. GeoGebra and interactive practice items are used to investigate linear, quadratic, and exponential functions and their graphs, and the effect of a translation on a table of values.
Type: Original Student Tutorial
Problem-Solving Task
The purpose of this task is to help students learn to read information about a function from its graph, by asking them to show the part of the graph that exhibits a certain property of the function. The task could be used to further instruction on understanding functions or as an assessment tool, with the caveat that it requires some amount of creativity to decide how to best illustrate some of the statements.
Type: Problem-Solving Task
Parent Resources
Problem-Solving Task
The purpose of this task is to help students learn to read information about a function from its graph, by asking them to show the part of the graph that exhibits a certain property of the function. The task could be used to further instruction on understanding functions or as an assessment tool, with the caveat that it requires some amount of creativity to decide how to best illustrate some of the statements.
Type: Problem-Solving Task