Course Number1111 |
Course Title222 |
1200310: | Algebra 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1200320: | Algebra 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1200380: | Algebra 1-B (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1200400: | Foundational Skills in Mathematics 9-12 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1210300: | Probability and Statistics Honors (Specifically in versions: 2014 - 2015, 2015 - 2019, 2019 - 2022, 2022 - 2024, 2024 and beyond (current)) |
7912090: | Access Algebra 1B (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2019, 2019 - 2022, 2022 and beyond (current)) |
2000520: | Bioscience 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current)) |
1200315: | Algebra 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1200385: | Algebra 1-B for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
7912100: | Fundamental Algebraic Skills (Specifically in versions: 2013 - 2015, 2015 - 2017 (course terminated)) |
7912075: | Access Algebra 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2019, 2019 - 2022, 2022 and beyond (current)) |
2100365: | African History Honors (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
Name |
Description |
Why Correlations? | This lesson is an introductory lesson to correlation coefficients. Students will engage in research prior to the teacher giving any direct instruction. The teacher will provide instruction on how to find the correlation coefficient by hand and using Excel. |
Why Correlations? | This lesson is an introductory lesson to correlation coefficients. Students will engage in research prior to the teacher giving any direct instruction. The teacher will provide instruction on how to find the correlation coefficient by hand and using Excel. |
Sea Ice Analysis | The changing climate is an important topic for both scientific analysis and worldly knowledge. This lesson uses data collected by the National Snow and Ice Data Center to create and use mathematical models as a predictive tool and do critical analysis of sea ice loss. |
Compacting Cardboard | Students investigate the amount of space that could be saved by flattening cardboard boxes. The analysis includes linear graphs and regression analysis along with discussions of slope and a direct variation phenomenon. |
Basketball - it's a tall man's sport - or is it? | The students will use NBA player data to determine if there is a correlation between the height of a basketball player and his free throw percentage. The students will use technology to create scatter plots, find the regression line and calculate the correlation coefficient.
Basketball is a tall man's sport in most regards. Shooting, rebounding, blocking shots - the taller player seems to have the advantage. But is that still true when shooting free throws? |
Heart Rate and Exercise: Is there a correlation? | Students will use supplied heart rate data to determine if heart rate and the amount of time spent exercising each week are correlated. Students will use GeoGebra to create scatter plots and lines of fit for the data and examine the correlation. Students will gather evidence to support or refute statistical statements made about correlation. The lesson provides easy to follow steps for using GeoGebra, a free online application, to generate a correlation coefficient for two given variables. |
Span the Distance Glider - Correlation Coefficient | This lesson will provide students with an opportunity to collect and analyze bivariate data and use technology to create scatter plots, lines of best fit, and determine the correlation strength of the data being compared. Students will have a hands on inquire based lesson that allows them to create gliders to analyze data. This lesson is an application of skills acquired in a bivariate unit of study. |
Study of Crowd Ratings at Disney | In this lesson, students develop a strong use of the vocabulary of correlation by investigating crowd ratings at Disney. Students will determine weekly crowd rating regression lines and correlations and discuss what this means for a Disney visit. |
Hand Me Your Data | Students will gather and use data to calculate a line of fit and the correlation coefficient with their classmates' height and hand size. They will use their line of fit to make approximations. |
Why do I have to have a bedtime? | This predict, observe, explain lesson that allows students to make predictions based on prior knowledge, observations, discussions, and calculations. Students will receive the opportunity to express themselves and their ideas while explaining what they learned. Students will make a prediction, collect data, and construct a scatter plot. Next, students will calculate the correlation coefficient and use it to describe the strength and magnitude of a relationship. |
Steel vs. Wooden Roller Coaster Lab | This lesson is a Follow Up Activity to the Algebra Institute and allows students to apply their skills on analyzing bivariate data. This STEM lesson allows students the opportunity to investigate if there is a linear relationship between a coaster's height and speed. Using technology the students can determine the line of best fit, correlation coefficient and use the line for interpolation. This lesson also uses prior knowledge and has students solve systems of equations graphically to determine which type of coaster is faster. |
Height Scatterplot Lab | This lesson is a Follow Up Activity to the Algebra Institute and allows students to apply their skills on analyzing bivariate data. This STEM lesson allows students the opportunity to investigate if there is a linear relationship between a person's height and foot length. Using technology the students can determine the line of best fit, correlation coefficient and use the line for interpolation. |
Scatter Plots and Correlations | Students create scatter plots, and lines of fit, and then calculate the correlation coefficient. Students analyze the results and make predictions. This lesson includes step-by-step directions for calculating the correlation coefficient using Excel, GeoGebra, and a TI-84 Plus graphing calculator. Students will make predictions for the number of views of a video for any given number of weeks on the charts. |
Scrambled Coefficient | Students will learn how the correlation coefficient is used to determine the strength of relationships among real data. Students use card sorting to order situations from negative to positive correlations. Students will create a scatter plot and use technology to calculate the line of fit and the correlation coefficient. Students will make a prediction and then use the line of fit and the correlation coefficient to confirm or deny their prediction.
Students will learn how to use the Linear Regression feature of a graphing calculator to determine the line of fit and the correlation coefficient.
The lesson includes the guided card sorting task, a formative assessment, and a summative assessment. |
How technology can make my life easier when graphing | Students will use GeoGebra software to explore the concept of correlation coefficient in graphical images of scatter plots. They will also learn about numerical and qualitative aspects of the correlation coefficient, and then do a matching activity to connect all these representations of the correlation coefficient. They will use an interactive program file in GeoGebra to manipulate the points to create a certain correlation coefficient. Step-by-step instructions are included to create the graph in GeoGebra and calculate the r correlation coefficient. |
Why Correlations? | This lesson is an introductory lesson to correlation coefficients. Students will engage in research prior to the teacher giving any direct instruction. The teacher will provide instruction on how to find the correlation coefficient by hand and using Excel. |