Compare and contrast structure and function of various types of microscopes.
Course Number1111 |
Course Title222 |
2000310: | Biology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2000320: | Biology 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2000430: | Biology Technology (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
3027010: | Biotechnology 1 (Specifically in versions: 2015 - 2022, 2022 and beyond (current)) |
3027020: | Biotechnology 2 (Specifically in versions: 2015 and beyond (current)) |
2002480: | Forensic Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002490: | Forensic Sciences 2 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002400: | Integrated Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002410: | Integrated Science 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2000800: | Florida's Preinternational Baccalaureate Biology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
7920015: | Access Biology 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current)) |
7920025: | Access Integrated Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current)) |
2000315: | Biology 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002405: | Integrated Science 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
Name |
Description |
Three "M"s: Models, Microscopy, and Measurement! | During this unit of discovery, teachers will encourage students in grades 9-10 to explore the world of microscopy. Throughout these 4-5 class periods, the student should discover the structures, functions, and usage of the various parts of the compound light microscope as well as how to measure specimens using a scientific model. If the extension is selected, the students will additionally discover the mathematical skills needed to compute specimen size, area of the field of view, and total magnification. Students will explore the importance of microscopy to promote their own understanding of microscopic life and cellular function. An additional homework extension allows students to create individual blogs using key terms and review each other's blogs in a round-robin manner. |
Mathematics of Microscopy | After measuring the "field of view" of your microscope, your students can estimate the size of objects with this calculation. |
Magnificent Microscope Tradeoffs MEA | In this Model-Eliciting Activity (MEA), students will learn about the four types of microscopes (compound, dissection, transmission electron, and scanning electron) and compare them using the Model Eliciting Activity, or MEA, approach. Students act as a materials selection committee who will help a teacher decide which type(s) of microscopes are best suited for his classroom.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx |
Microscope Basics | Students will learn microscope basics including parts of a compound light microscope, different types of microscopes, and how microscopes work. This lesson includes a 4-day plan that has students label the parts of a microscope with the teacher, in a group, and using a microscope. The students will also complete a presentation on a specific type of microscope. |
Investigating Cell Theory through Observation, Testing, and Modeling | Students will address the three main tenets of cell theory by investigating: (1) "How big is a cell?" (using virtual scaling and compound microscope skills); (2) "What do cells do?" (students will build a model of a cell using craft materials); and (3) "Where do new cells come from?" (interpreting evidence from graphs and making new predictions). This lesson would work well paired with a review on what constitutes a scientific theory and student practice of using compound microscopes. |