Apply the law of conservation of linear momentum to interactions, such as collisions between objects.
Course Number1111 |
Course Title222 |
2002480: | Forensic Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002490: | Forensic Sciences 2 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002440: | Integrated Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002450: | Integrated Science 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003400: | Nuclear Radiation (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated)) |
2020710: | Nuclear Radiation Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003320: | Physical Science Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003380: | Physics 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003390: | Physics 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003410: | Physics 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003600: | Principles of Technology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1800320: | Air Force: Aerospace Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1800360: | Air Force: Aerospace Science 4 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002445: | Integrated Science 3 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
2003385: | Physics 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
2003836: | Florida's Preinternational Baccalaureate Physics 1 (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003838: | Florida's Preinternational Baccalaureate Physics 2 (Specifically in versions: 2015 and beyond (current)) |
Name |
Description |
Conservation of Linear Momentum | This is an application based activity that allows students to question and explore the Conservation of Momentum and how it governs the natural world. It is designed for students who have a firm grasp on physical concepts of nature and mathematical derivations and manipulations. In this activity the teacher will use an Online Simulation titled "2D Elastic Collisions of Two Hard Spheres" to model idealistic elastic collisions and describe how mass and initial velocities can affect the post-collision momentum for each mass. The students will also be introduced to inelastic collisions and will compare these to elastic collisions. Students will fill out the attached lab worksheet and perform calculations based on manipulating the mathematical equation for Momentum Conservation. |
To Be, or Not to Be...Conserved! | This is an inquiry based activity that encourages student engagement with relevant lab procedures and class discussions. It is designed for students to explore and discover relationships about the Conservation of Momentum through a meaningful lab and with the guidance of teacher led discussions. In this activity, students are able to visualize how momentum occurs and how variable masses affect the momentum and velocity of the carts. |
The Physics of Pool | The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment.
In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.
Though not required, students who have been exposed to some physics would benefit most from this video. In mathematically rigorous classes, students can concentrate on the details of vectors and conservation of linear momentum.
No materials are required for this lesson, and it can be completed easily within a class period. |
Ramp It Up | Using inquiry techniques, students, working in groups, are asked to design and conduct experiments to test the Law of Conservation of Energy and the Law of Conservation of Momentum. Upon being provided with textbooks, rulers, measuring tapes, stopwatches, mini-storage containers, golf balls, marbles, rubber balls, steel balls, and pennies, they work cooperatively to implement and revise their hypotheses. With limited guidance from the teacher, students are able to visualize the relationships between mass, velocity, height, gravitational potential energy, kinetic energy, and total energy as well as the relationships between mass, velocity, and momentum. |
Momentum and the Law of Conservation of Momentum: A Student-Centered Lesson | This is a largely self-paced unit for students to learn the basics of Momentum as well as the Law of Conservation of Momentum. Students complete two investigative exercises (one hands-on, the other virtual). They then are directed to read a website (or a textbook could be substituted) and take notes with the teacher"s support as needed. After taking their own notes, students complete a worksheet to practice calculations involving the Law of Conservation of Momentum. At the end of the unit, students take a traditional summative assessment with True/False, multiple-choice, and fill-in-the-blank questions along with a calculations section. Note that this lesson only covers the basics of linear momentum and does not include impulse or angular momentum. |
How Mosquitoes Can Fly in the Rain | In this lesson, we learn how insects can fly in the rain. The objective is to calculate the impact forces of raindrops on flying mosquitoes. Students will gain experience with using Newton's laws, gathering data from videos and graphs, and most importantly, the utility of making approximations. No calculus will be used in this lesson, but familiarity with torque and force balances is suggested. No calculators will be needed, but students should have pencil and paper to make estimations and, if possible, copies of the graphs provided with the lesson. Between lessons, students are recommended to discuss the assignments with their neighbors. |