Explain the relationship between moving charges and magnetic fields, as well as changing magnetic fields and electric fields, and their application to modern technologies.
Course Number1111 |
Course Title222 |
2001310: | Earth/Space Science (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2001320: | Earth/Space Science Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002440: | Integrated Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002450: | Integrated Science 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003400: | Nuclear Radiation (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated)) |
2020710: | Nuclear Radiation Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003390: | Physics 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003410: | Physics 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003610: | Principles of Technology 2 (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated)) |
2002330: | Space Technology and Engineering (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated)) |
1800320: | Air Force: Aerospace Science 3 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
1800360: | Air Force: Aerospace Science 4 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
7920020: | Access Earth/Space Science (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current)) |
2002445: | Integrated Science 3 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
2003500: | Renewable Energy 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current)) |
2003836: | Florida's Preinternational Baccalaureate Physics 1 (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003838: | Florida's Preinternational Baccalaureate Physics 2 (Specifically in versions: 2015 and beyond (current)) |
Name |
Description |
World record for compact particle accelerator: Researchers ramp up energy of laser-plasma 'tabletop' accelerator | This informational text resource is intended to support reading in the content area. Using one of the most powerful lasers in the world, researchers have accelerated subatomic particles to the highest energies ever recorded from a compact accelerator. The team used a specialized petawatt laser and a charged-particle gas called plasma to get the particles up to speed. The setup is known as a laser-plasma accelerator, an emerging class of particle accelerators that physicists believe can shrink traditional, miles-long accelerators to machines that can fit on a table. |
Spider Webs More Effective at Snaring Electrically Charged Insects | This informational text resource is intended to support reading in the content area.
The text describes how negatively charged spider webs attract positively charged insects. The article includes a link to an optional video and two good pictures of insects interacting with spider webs. This resource also includes text-dependent questions. |
X-ray 'Eyes' | This informational text resource is intended to support reading in the content area. Scientists have discovered that X-rays can be used to photograph the movement of atoms and molecules in chemical reactions (i.e., photosynthesis). |
Magnetism | This site presents the basic ideas of magnetism and applies these ideas to the earth's magnetic field. There are several useful diagrams and pictures interspersed throughout this lesson, as well as links to more detailed subjects. This is an introduction to a larger collection on exploring the Earth's magnetosphere. A Spanish translation is available. |
Name |
Description |
Paramagnetism | Observe what happens when liquid nitrogen and liquid oxygen are exposed to a high magnetic field Learn the difference between diamagnetic and paramagnetic molecules |
Superconductors | Observe what happens when a magnet is placed on a superconductor |
The Shrinking Quarter Machine | Magnetic and electric forces are used for shrinking a quarter to the size of a dime in a very short amount of time |
Solar Wind's Effect on Earth | The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth. |
Name |
Description |
Reversing Velocity of a charged particle with magnetic field | This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed. |
Lorentz Force | This visual interactive simulation will help the student watch how a charged particle moves in a magnetic field. This force is defined as the Lorentz force which is the force on a point charge due to electromagnetic fields. There is a relationship between the movement of the particle through the magnetic field, the strength of that magnetic field and the force on the particle. The following equation described the force: F=qvB Where:
- F is the force in Newtons
- q is the electric charge in coulombs
- v is the velocity of the charge in meters/sound
- B is the strength of the magnetic field.
|
Magnets and Electromagnets | This virtual manipulative will allow the students to explore the interactions between a compass and bar magnet. Students can discover that magnetic fields are produced when all the electrons in a metal object are spinning in the same direction, either as a natural phenomenon, in an artificially created magnet, or when they are induced to do so by an electromagnetic field. Some of the sample learning goals can be:
- Predict the direction of the magnet field for different locations around a bar magnet and electromagnet.
- Compare and contrast bar magnets and electromagnets.
- Identify the characteristics of electromagnets that are variable and what effects each variable has on the magnetic field's strength and direction.
- Relate magnetic field strength to distance quantitatively and qualitatively.
|
Generator | This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil. Some of the sample learning goals can be:
- Identify equipment and conditions that produce induction.
- Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
- Predict how the current will change when the conditions are varied.
- Explain practical applications of Faraday's Law.
- Explain what is the cause of the induction.
|
Simplified MRI | Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this simulation you can:
- Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
- Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
- Describe how to put these two ideas together to detect where there is a higher density of spins.
|
Faraday's Law | Light a bulb by waving a magnet. This demonstration of Faraday's law will help you to:
- Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
- Explain the difference between moving the magnet through the coil from the right side versus the left side.
- Explain the difference between moving magnet through the big coil versus the smaller coil.
|
Name |
Description |
Reversing Velocity of a charged particle with magnetic field: | This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed. |
Generator: | This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil. Some of the sample learning goals can be:
- Identify equipment and conditions that produce induction.
- Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
- Predict how the current will change when the conditions are varied.
- Explain practical applications of Faraday's Law.
- Explain what is the cause of the induction.
|
Simplified MRI: | Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this simulation you can:
- Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
- Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
- Describe how to put these two ideas together to detect where there is a higher density of spins.
|
Faraday's Law: | Light a bulb by waving a magnet. This demonstration of Faraday's law will help you to:
- Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
- Explain the difference between moving the magnet through the coil from the right side versus the left side.
- Explain the difference between moving magnet through the big coil versus the smaller coil.
|
Name |
Description |
Reversing Velocity of a charged particle with magnetic field: | This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed. |
Lorentz Force: | This visual interactive simulation will help the student watch how a charged particle moves in a magnetic field. This force is defined as the Lorentz force which is the force on a point charge due to electromagnetic fields. There is a relationship between the movement of the particle through the magnetic field, the strength of that magnetic field and the force on the particle. The following equation described the force: F=qvB Where:
- F is the force in Newtons
- q is the electric charge in coulombs
- v is the velocity of the charge in meters/sound
- B is the strength of the magnetic field.
|
Magnets and Electromagnets: | This virtual manipulative will allow the students to explore the interactions between a compass and bar magnet. Students can discover that magnetic fields are produced when all the electrons in a metal object are spinning in the same direction, either as a natural phenomenon, in an artificially created magnet, or when they are induced to do so by an electromagnetic field. Some of the sample learning goals can be:
- Predict the direction of the magnet field for different locations around a bar magnet and electromagnet.
- Compare and contrast bar magnets and electromagnets.
- Identify the characteristics of electromagnets that are variable and what effects each variable has on the magnetic field's strength and direction.
- Relate magnetic field strength to distance quantitatively and qualitatively.
|
Generator: | This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil. Some of the sample learning goals can be:
- Identify equipment and conditions that produce induction.
- Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
- Predict how the current will change when the conditions are varied.
- Explain practical applications of Faraday's Law.
- Explain what is the cause of the induction.
|
Simplified MRI: | Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
In this simulation you can:
- Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
- Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
- Describe how to put these two ideas together to detect where there is a higher density of spins.
|
Faraday's Law: | Light a bulb by waving a magnet. This demonstration of Faraday's law will help you to:
- Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
- Explain the difference between moving the magnet through the coil from the right side versus the left side.
- Explain the difference between moving magnet through the big coil versus the smaller coil.
|