Define a problem from the sixth grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.
Name |
Description |
Just Right Goldilocks’ Café: Temperature & Turbidity | This is lesson 3 of 3 in the Goldilocks’ Café Just Right unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature and turbidity level. Students will use both the temperature probe and turbidity sensor and code using ScratchX during their investigation. |
Just Right Goldilocks’ Café: Turbidity | This is lesson 2 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” level of turbidity. Students will use turbidity sensors and code using ScratchX during their investigation. |
Just Right Goldilocks’ Café: Temperature | This is lesson 1 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature. Students will use temperature probes and code using ScratchX during their investigation.
|
Gr. 6 Lesson 3-Florida’s Limestone–Tums for Our Water and Soil | Students will conduct a controlled experiment to determine the effect Florida's limestone has on the pH levels of Florida's water and soil. Students will compare limestone's effect to that of other rocks and minerals found naturally in Florida. At the end of this investigation, students should be able to articulate the effect limestone has on the pH of water in Florida, the importance of this phenomenon, and a basic understanding of the process by which limestone affects pH levels in water. |
Fluid Streams Affecting Weather | The student will complete a series of stations in order to explain how jet streams and ocean currents influence local weather. Students will rotate through six stations in order to gain background knowledge about jet streams and ocean currents. The students will also answer questions at each station to elaborate their understanding of jet streams and ocean currents and how they affect local weather. After the stations are completed, the teacher will lead a whole group discussion to connect the student's learning to the big ideas of the lesson. |
Build Me a Beach House | This is a multi-day activity that reinforces science, math, and technology skills by taking the students through the design process. Students will be tasked with designing and building a structure that could withstand high winds and water as would be found close to the seashore. |
Measurement and Data Collection | In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.
This lesson uses the Hip Sciences Sensor Wand and Temperature Probe. Please refer to the corresponding Hip Science Sensor Guide(s) for information on using the sensor. |
Cool Special Effects | In this MEA, students will apply the concepts of heat transfer, especially convection. Students will analyze factors such as temperature that affect the behavior of fluids as they form convection currents.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom. |
Measurement Data Error | In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data. |
Measurement and Data Collection | In this interdisciplinary lesson, students will practice the skill of data collection with a variety of tools and by statistically analyzing the class data sets will begin to understand that error is inherent in all data.
This lesson uses the Hip Sciences Sensor Wand and Temperature Probe. Please refer to the corresponding Hip Science Sensor Guide(s) for information on using the sensor. |
Levitation Engineers: Exploring Forces | Students will explore, observe, and infer about the properties and behaviors of magnets by conducting their own experiments with the magnets and the differences between contact and non-contact forces. Students will plan and design a magnetic levitation device using the engineering design process. |
Energy of Art | The students will follow the scientific process to investigate the movement of a pendulum and then apply that knowledge to design and build device that automatically creates a "splatter" painting. |
An Investigative Look at Florida's Sinkholes | This is a 6th grade inquiry lab lesson for students to model what factors affect sinkholes, along with weathering and erosion. |
The Penny Lab | Students will design an investigation to collect and analyze data, determine results, write a justification and make a presentation using U.S. pennies.
Paired student teams will determine the mass of 50 U.S. pennies. Students will also collect other data from each penny such as minted year and observable appearance. Students will be expected to organize/represent their data into tables, histograms and other informational structures appropriate for reporting all data for each penny. Students will be expected to consider the data, determine trends, and research information in order to make a claim that explains trends in data from minted U.S. pennies.
Hopefully, student data reports will support the knowledge that the metallic composition of the penny has changed over the years. Different compositions can have significantly different masses. A sufficiently random selection of hundreds of pennies across the class should allow the students to discover trends in the data to suggest the years in which the composition changed. |
An Inquiry into Albedo, Land Surface and AirTemperture | This lesson is designed to provide a hands on inquiry on Sphere Interactions by investigating the relationship between Surface Albedo and Atmospheric Temperature. In this activity, students will develop an Argument Driven Inquiry (ADI) with the Guiding question: "What is the relationship between the land surface Albedo and Atmospheric Temperature?" |
Let's Play Ball | Students will investigate if the pitcher's mound and center field are the same temperature, since they are in the same location but have two different surfaces. |
Motion and Position of the Human Body | In this lab students will explore the interactions of the muscular and skeletal systems and how they contribute to homeostasis. Students will collect data based on their own body movements and identify how movement occurs through muscles, tendons, joints and bones. Finally students will conclude that temperature maintenance, cell production and nutritional factors are all variables controlled, in part, by these body systems for the purpose of homeostasis. |
pH: The Power of Health is in Balance | In this Model-Eliciting Activity (MEA), students work in collaborative learning groups to classify pH values. Students are faced with a problem of correcting possible affects of contaminating pollution. Scenarios of a problem statement help students apply factors to water resources in real world events. They recognize and explain that a scientific theory is well-supported and widely accepted explanation of nature and not simply a claim posed by an individual. Students may prove their proposal by performing a pH wet lab with common kitchen solutions. pH - The Power of Hydrogen Ions implies that the "power of health is in balance" with balanced "Hydrogen Ions." Life exists inside a certain range of pH values.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx |
NASA Beginning Engineering, Science and Technology | The NASA BEST Activities Guides is designed to teach students the Engineering Design
Process. These lessons are created to accommodate grades 6-8.
All follow the same set of activities and teach students about humans' endeavor to return to the
Moon. Specifically, how we investigate the Moon remotely, the modes of transportation to and on
the Moon, and how humans will live and work on the Moon. |
Got You Covered! | Students will develop a procedure for selecting car covers to protect the fleet of vehicles used by the Everywhere Sales Corporation. They will use a given data table to consider the attributes of several different brands of car covers, analyze their strengths and weaknesses, and then rank and weight the attributes according to their level of importance. The procedure will be written out in detail and a rationale provided to advise the company which car cover(s) should be used.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom. |
Tree-mendous Choice for Erosion Prevention | In this Model-Eliciting Activity (MEA), students are provided with an open-ended, realistic problem for which students will research, discuss, and present the characteristics of 8 trees based on characteristics, type of wood, and suitability for growth in wet or dry climate with current weather patterns. Their objective is to promote the soil erosion prevention Students support claims with clear reasons and relevant evidence, as they produce clear and coherent writing to describe the project of their structure ins development, organization, and style are appropriate to task, purpose, and audience.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx |
Immunity Lesson Plan | This lesson plan has power point to support it. The lesson requires students to complete a project comparing bacteria, fungus, and viruses. |
Uncle Henry's Dilemma | Uncle Henry's Dilemma is a problem solving lesson to determine the global location for the reading of Uncle Henry's will. The students will interpret data sets which include temperature, rainfall, air pollution, travel cost, flight times and health issues to rank five global locations for Uncle Henry's relatives to travel to for the reading of his will. This is an engaging, fun-filled MEA lesson with twists and turns throughout. Students will learn how this procedure of selecting locations can be applied to everyday decisions by the government, a business, a family, or individuals.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom. |
Dissolving Gobstoppers Using Controls and Variables | Students will conduct a simple laboratory experience that practices the proper use of controls and variables. Students will conduct a controlled experiment in their laboratory groups. |
Potential and Kinetic Energy; "To Move or not to Move". | Students will investigate, through a guided exploration lab, using a tennis ball, the Law of Conservation of Energy to differentiate between Potential and Kinetic Energy, and identify real life situations where potential energy is transformed into kinetic energy and vice versa. |
Differences between Climate and Weather | Students will collect weather data over several days or weeks, graph temperature data, and compare the temperature data collected with averaged climate data where they live, to better understand the differences between weather and climate. |
Building a Skyscraper—An Engineering Design Challenge | This Engineering Design Challenge is intended to help students apply the concepts of contact and non-contact forces as they build structures able to withstand the forces of wind and gravity. It is not intended as an initial introduction to this benchmark. |
Falling Water | Students drop water from different heights to demonstrate the conversion of water's potential energy to kinetic energy. |
Impact Crators | In this activity, marbles or other spheres such as steel shot, ball bearings, golf, or wooden balls are used as impactors dropped from a series of heights onto a prepared "lunar surface." Using impactors of different mass dropped from the same height will allow students to study the relationship of mass of the impactor to crater size. Dropping impactors from different heights will allow students to study the relationship of velocity of the impactor to crater size. |
Lunar Landers: Exploring Gravity | The attached engineering design lesson plan elaborates on the PBS Kids online resource and will probably take from 4-5 class periods. It takes the students through the engineering design process which includes the following components: Identify the Problem, Brainstorm and Design a Solution, Test and Evaluate, Redesign, Reflect and Share the Solution. |
Marshmallow Design Challenge | This fun design/build exercise teaches some simple but profound lessons in collaboration, innovation, hidden assumptions, and creativity that are central to the engineering process. |