Standard #: SC.5.N.2.2


This document was generated on CPALMS - www.cpalms.org



Recognize and explain that when scientific investigations are carried out, the evidence produced by those investigations should be replicable by others.


General Information

Subject Area: Science
Grade: 5
Body of Knowledge: Nature of Science
Idea: Level 2: Basic Application of Skills & Concepts
Big Idea: The Characteristics of Scientific Knowledge -

A: Scientific knowledge is based on empirical evidence, and is appropriate for understanding the natural world, but it provides only a limited understanding of the supernatural, aesthetic, or other ways of knowing, such as art, philosophy, or religion.

B: Scientific knowledge is durable and robust, but open to change.

C: Because science is based on empirical evidence it strives for objectivity, but as it is a human endeavor the processes, methods, and knowledge of science include subjectivity, as well as creativity and discovery.

Date Adopted or Revised: 02/08
Date of Last Rating: 05/08
Status: State Board Approved
Assessed: Yes

Related Courses

Course Number1111 Course Title222
5020060: Science - Grade Five (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
7720060: Access Science Grade 5 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))
5011050: Library Skills/Information Literacy Grade 5 (Specifically in versions: 2016 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))


Related Access Points

Access Point Number Access Point Title
SC.5.N.2.In.2 Recognize that experiments involve procedures that can be repeated the same way by others.
SC.5.N.2.Su.2 Recognize the importance of following correct procedures when carrying out science experiments.
SC.5.N.2.Pa.2 Recognize that a common activity can be repeated.


Related Resources

Lesson Plans

Name Description
Using Machine Learning and Computational Thinking to Train an AI Model

Students will explore Artificial Intelligence (AI) and use computational thinking and Machine Learning (ML) to pretrain a model to recognize and identify objects, including geometric shapes and aircraft. They will used unplugged activities to mimic sorting and classification of the objects using their prior knowledge and then make connections to human learning and Machine Learning. Students will then problem solve and propose solutions using computational thinking to improve the ML model to better recognize the objects. This lesson is an integrated Computer Science, Science and Math lesson designed for students in grades 3-5 to apply math and science content knowledge while exploring and using computational thinking as they think like Computer Engineers and reflect on potential career paths.

Just Right Goldilocks’ Café: Temperature & Turbidity

This is lesson 3 of 3 in the Goldilocks’ Café Just Right unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature and turbidity level. Students will use both the temperature probe and turbidity sensor and code using ScratchX during their investigation.

Just Right Goldilocks’ Café: Turbidity

This is lesson 2 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” level of turbidity. Students will use turbidity sensors and code using ScratchX during their investigation.

Just Right Goldilocks’ Café: Temperature

This is lesson 1 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature. Students will use temperature probes and code using ScratchX during their investigation.

 

Bridge to Perfection

During this activity, students will read a book about the Brooklyn Bridge. After whole class discussion, children will explore different types of bridges and data, in order to decipher which bridge is the strongest. The students will work collaboratively in groups with assigned student roles. Students will utilized Higher Order thinking to create a solution. The culminating activity is a presentation of solution to whole class.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.

Original Student Tutorial

Name Description
Replication Is Validation!

Discover why it's important for scientists to replicate the procedures used in earlier scientific investigations to validate the findings or results in this interactive tutorial.

Teaching Idea

Name Description
Compost Growth Challenge-A SeaWorld Classroom Activity Students will compare and contrast the growth rate of plants grown in different soils.

Student Resources

Original Student Tutorial

Name Description
Replication Is Validation!:

Discover why it's important for scientists to replicate the procedures used in earlier scientific investigations to validate the findings or results in this interactive tutorial.



Printed On:3/13/2025 5:15:07 PM
Print Page | Close this window