Investigate and explain the relationships among current, voltage, resistance, and power.
Course Number1111 |
Course Title222 |
3027010: | Biotechnology 1 (Specifically in versions: 2015 - 2022, 2022 and beyond (current)) |
2002490: | Forensic Sciences 2 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002420: | Integrated Science 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002430: | Integrated Science 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003310: | Physical Science (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003320: | Physical Science Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003380: | Physics 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003390: | Physics 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003600: | Principles of Technology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2003610: | Principles of Technology 2 (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated)) |
2002330: | Space Technology and Engineering (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated)) |
0400410: | Technical Theatre Design & Production 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002425: | Integrated Science 2 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
2003385: | Physics 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
0400408: | Technical Theatre: Design and Production for Lighting and Sound (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated)) |
2003500: | Renewable Energy 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current)) |
7920035: | Fundamental Integrated Science 2 (Specifically in versions: 2013 - 2015, 2015 - 2017 (course terminated)) |
2003836: | Florida's Preinternational Baccalaureate Physics 1 (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
7920022: | Access Physical Science (Specifically in versions: 2016 - 2018, 2018 - 2023, 2023 and beyond (current)) |
1804310: | United States Coast Guard Leadership and Operations 2 (Specifically in versions: 2021 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current)) |
Name |
Description |
Virtual Construction Kit (DC only) | Learn how to build a circuit
Learn how to measure voltage in a circuit using a voltmeter
Determine the resistance of certain objects that can be used as part of an electric circuit
Explain the difference between parallel and series circuits |
Battery Voltage | This simulation will allow you to look inside a battery to see how it works. You will be able to select the battery voltage and see the movement of the charges from one end of the battery to the other. A voltmeter will tell the resulting battery voltage. Some of the sample learning goals can be:
- Do the small blue spheres represent positive or negative charges?
- Which side of the battery is labeled positive, and which side is negative?
- How can you determine which side of the battery is positive and negative just by the location of the blue charges?
|
Ohm's Law | This virtual manipulative will allow the user to see how the equation form of ohm's law relates to a simple circuit. Learners can adjust the voltage and resistance, and see the current change according to Ohm's law. The size of the symbols in the equation change to match the circuit diagram.
|
Capacitor Lab | Explore how a capacitor works in this simulation. Change the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. You can observe the electric field in the capacitor, measure voltage and the electric field.
Other investigations can include:
- Determine the relationship between charge and voltage for a capacitor.
- Determine the energy stored in a capacitor or a set of capacitors in a circuit.
- Explore the effect of space and dielectric materials inserted between the conductors of the capacitor in a circuit.
- Determine the equivalent capacitance of a set of capacitors in series and in parallel in a circuit.
|
Resistance in a Wire | This manipulative will help the students to learn about the physics of resistance in a wire. The electrical resistance of a wire would be expected to be greater for a longer wire, less for a wire of larger cross sectional area, and would be expected to depend upon the material out of which the wire is made, to understand this, students can change the resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire. Some of the sample learning goals can be:
- What characteristics of a resistor are variable in this model?
- How does each affect the resistance (will increasing or decreasing each make the resistance correspondingly increase or decrease?)
- Explain your ideas about why they change the resistance.
|
Circuit Construction kit | An electronic kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.
Other options for exploration:
- Discuss basic electricity relationships
- Build circuits from schematic drawings.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationship in circuits.
- Discuss basic electricity relationships in series and parallel circuits.
- Provide reasoning to explain the measurements in circuits.
- Determine the resistance of common objects in the "Grab Bag".
|
Battery-Resistor Circuit | This simulation demonstrates how a resistor works and the relationship between voltage, current and resistance. A change in temperature is also recorded with varying the parameters.
The students will be shown the flow of electrons to make a fan spin. The more resistance that they put the slower the elctrons will move and vice versa. The students will also see the power generated by the battery. |
Circuit Construction Kit | The students will have the opportunity to build their own circuit loop with the materials presented to them. |
Name |
Description |
Virtual Construction Kit (DC only): | Learn how to build a circuit
Learn how to measure voltage in a circuit using a voltmeter
Determine the resistance of certain objects that can be used as part of an electric circuit
Explain the difference between parallel and series circuits |
Ohm's Law: | This virtual manipulative will allow the user to see how the equation form of ohm's law relates to a simple circuit. Learners can adjust the voltage and resistance, and see the current change according to Ohm's law. The size of the symbols in the equation change to match the circuit diagram.
|
Capacitor Lab: | Explore how a capacitor works in this simulation. Change the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. You can observe the electric field in the capacitor, measure voltage and the electric field.
Other investigations can include:
- Determine the relationship between charge and voltage for a capacitor.
- Determine the energy stored in a capacitor or a set of capacitors in a circuit.
- Explore the effect of space and dielectric materials inserted between the conductors of the capacitor in a circuit.
- Determine the equivalent capacitance of a set of capacitors in series and in parallel in a circuit.
|
Resistance in a Wire: | This manipulative will help the students to learn about the physics of resistance in a wire. The electrical resistance of a wire would be expected to be greater for a longer wire, less for a wire of larger cross sectional area, and would be expected to depend upon the material out of which the wire is made, to understand this, students can change the resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire. Some of the sample learning goals can be:
- What characteristics of a resistor are variable in this model?
- How does each affect the resistance (will increasing or decreasing each make the resistance correspondingly increase or decrease?)
- Explain your ideas about why they change the resistance.
|
Circuit Construction kit: | An electronic kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.
Other options for exploration:
- Discuss basic electricity relationships
- Build circuits from schematic drawings.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationship in circuits.
- Discuss basic electricity relationships in series and parallel circuits.
- Provide reasoning to explain the measurements in circuits.
- Determine the resistance of common objects in the "Grab Bag".
|
Circuit Construction Kit: | The students will have the opportunity to build their own circuit loop with the materials presented to them. |
Name |
Description |
Ohm's Law: | This virtual manipulative will allow the user to see how the equation form of ohm's law relates to a simple circuit. Learners can adjust the voltage and resistance, and see the current change according to Ohm's law. The size of the symbols in the equation change to match the circuit diagram.
|
Capacitor Lab: | Explore how a capacitor works in this simulation. Change the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. You can observe the electric field in the capacitor, measure voltage and the electric field.
Other investigations can include:
- Determine the relationship between charge and voltage for a capacitor.
- Determine the energy stored in a capacitor or a set of capacitors in a circuit.
- Explore the effect of space and dielectric materials inserted between the conductors of the capacitor in a circuit.
- Determine the equivalent capacitance of a set of capacitors in series and in parallel in a circuit.
|
Resistance in a Wire: | This manipulative will help the students to learn about the physics of resistance in a wire. The electrical resistance of a wire would be expected to be greater for a longer wire, less for a wire of larger cross sectional area, and would be expected to depend upon the material out of which the wire is made, to understand this, students can change the resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire. Some of the sample learning goals can be:
- What characteristics of a resistor are variable in this model?
- How does each affect the resistance (will increasing or decreasing each make the resistance correspondingly increase or decrease?)
- Explain your ideas about why they change the resistance.
|
Circuit Construction kit: | An electronic kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.
Other options for exploration:
- Discuss basic electricity relationships
- Build circuits from schematic drawings.
- Use an ammeter and voltmeter to take readings in circuits.
- Provide reasoning to explain the measurements and relationship in circuits.
- Discuss basic electricity relationships in series and parallel circuits.
- Provide reasoning to explain the measurements in circuits.
- Determine the resistance of common objects in the "Grab Bag".
|