Plot, order and compare whole numbers up to 10,000.
The numbers 3,475; 4,743 and 4,753 can be arranged in ascending order as 3,475; 4,743 and 4,753.
When comparing numbers, instruction includes using an appropriately scaled number line and using place values of the thousands, hundreds, tens and ones digits.
Name |
Description |
I Vote, You Vote, We Vote | In this lesson, students will analyze voting data and perform mathematical procedures to determine the answer to specific questions. Students will compare the population of the community vs. the number of votes counted. Students will discuss the contribution each citizen is making when voting and the effects on the results when citizens do not vote. |
Plot, Order, and Compare Dates in History | Students will apply their understanding of place value to plot, order, and compare event descriptions related to key figures in history. The key figures used in this lesson are James Madison, Alexander Hamilton, Booker T. Washington, Susan B. Anthony, William Pope Duval, William Dunn Mosely and Josiah T. Walls. Students will make connections between using a number line to plot, order and compare numbers, to real-world careers that use timelines for historical purposes in this integrated lesson plan. |
Sweet Donut Shop | In this Model Eliciting Activity, MEA, students will help the Sweet Donut Shop determine what the newest donut will be. Students are given the cost to make each batch along with the selling price and are asked to determine the profit for each batch. Students create a procedure for ranking the donuts and write a letter explaining the procedure and the ranking. In the “twist” students are provided the starting and finishing times for each batch. They must determine the total amount of time, decide if their procedure should change based on the new information, and write a letter explaining whether the procedure changed and the new ranking of the donuts.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Perfect Pool Plans | In this Model Eliciting Activity, MEA, students will create a procedure for ranking pool construction companies based on the number of years in business, customer satisfaction, and available pool dimensions. In a “twist,” students will be given information about discounts available by each company. Students will evaluate their procedure for ranking and change it if necessary.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Healthy Habits | In this Model Eliciting Activity, MEA, students will determine what two snacks should be placed in the school vending machines because the district is asking for healthier and tastier snacks. Factors to consider are calories, fat, protein, sugar, student comments, and cost.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
|
Dining Dilemma! | In this Model Eliciting Activity, MEA, students will compare different nutritional content of chicken nuggets from many restaurants presented in bar graphs. They will factor in the calories, total fat, and sodium information about the nuggets to create a procedure for ranking the nuggets from healthiest to least healthy.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
|
Pick a Pet | In this MEA, students will rank pets from most family-friendly to least family-friendly by considering data such as purchase price, cost to feed, cleanliness, etc. as well as notes regarding the physical description of the pet. In the twist, students will be given information on additional pets as well as information on cleanliness and life expectancy. Students may need to make trade-offs in regards to cost to adopt, feed, and house along with life expectancy, ease of clean up, etc.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx
|
Best Baseball Player? | In this Model Eliciting Activity, MEA, students will use data to create a procedure for ranking baseball players and determine which baseball player they think is the best hitter using the procedure.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Cars for Sale MEA | Students will compare multi-digit numbers to create a procedure for choosing the best car for Edward Easy to buy for his driving school. They will have to weigh quantitative and qualitative factors to determine the best car to purchase. Students will present their recommendations and the steps to the procedure they created in writing and orally.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem, while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought process. MEAs follow a problem-based, student centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEA’s visit: https://www.cpalms.org/cpalms/mea.aspx |
Rounding Round and Round | In this lesson, students will gain fluency with rounding numbers to the nearest 10s and 100s place. The lesson has number lines to help students understand rounding. |
Round the Number Line | The focus of this lesson is to find the halfway point and use it to round numbers. The lesson rounds numbers 0 to 100 to the nearest ten and 0 to 1000 to the nearest ten and hundred. |
How Did the Baby Chick Cross the Road to Rounding? | In this lesson, students will engage in tellling jokes and doing outside activities to discover rounding concepts. Students will use a vertical number line to round numbers from 0 to 1,000. |
Rounding Relay | This lesson uses a relay game to provide students with practice for their rounding skills. |