Clusters should not be sorted from Major to Supporting and then taught in that order. To do so would strip the coherence of the mathematical ideas and miss the opportunity to enhance the major work of the grade with the supporting clusters.
Related Standards
Related Access Points
Access Points
Related Resources
Educational Game
Educational Software / Tools
Formative Assessments
Image/Photograph
Lesson Plans
Original Student Tutorial
Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
Student Center Activity
Tutorials
Virtual Manipulative
Student Resources
Original Student Tutorial
Learn to describe a sequence of transformations that will produce similar figures. This interactive tutorial will allow you to practice with rotations, translations, reflections, and dilations.
Type: Original Student Tutorial
Educational Game
Play this interactive game and determine whether the similar shapes have gone through rotations, translations, or reflections.
Type: Educational Game
Educational Software / Tools
This virtual manipulative can be used to demonstrate and explore the effect of translation, rotation, and/or reflection on a variety of plane figures. A series of transformations can be explored to result in a specified final image.
Type: Educational Software / Tool
This resource is an online glossary to find the meaning of math terms. Students can also use the online glossary to find words that are related to the word typed in the search box. For example: Type in "transversal" and 11 other terms will come up. Click on one of those terms and its meaning is displayed.
Type: Educational Software / Tool
Problem-Solving Tasks
Students use interior and exterior angles to to verify attributes of an octagon and square. Students are given a tile pattern involving congruent regular octagons and squares.
Type: Problem-Solving Task
The purpose of this task is for students to find a way to decompose a regular hexagon into congruent figures. This is meant as an instructional task that gives students some practice working with transformations.
Type: Problem-Solving Task
Students' first experience with transformations is likely to be with specific shapes like triangles, quadrilaterals, circles, and figures with symmetry. Exhibiting a sequence of transformations that shows that two generic line segments of the same length are congruent is a good way for students to begin thinking about transformations in greater generality.
Type: Problem-Solving Task
This task has two goals: first to develop student understanding of rigid motions in the context of demonstrating congruence. Secondly, student knowledge of reflections is refined by considering the notion of orientation in part (b). Each time the plane is reflected about a line, this reverses the notions of ''clockwise'' and ''counterclockwise.''
Type: Problem-Solving Task
In this resource, students experiment with the reflection of a triangle in a coordinate plane.
Type: Problem-Solving Task
The purpose of this task is for students to apply a reflection to a single point. The standard asks students to apply the effect of a single transformation on two-dimensional figures. Although this problem only applies a reflection to a single point, it has high cognitive demand if the students are prompted to supply a picture. This is because the coordinates of the point (1000,2012) are very large. If students try to plot this point and the line of reflection on the usual x-y coordinate grid, then either the graph will be too big or else the point will lie so close to the line of reflection that it is not clear whether or not it lies on this line. A good picture requires a careful choice of the appropriate region in the plane and the corresponding labels. Moreover, reflections of two-dimensional figures are found by reflecting individual points.
Type: Problem-Solving Task
The task is intended for instructional purposes and assumes that students know the properties of rigid transformations. Note that the vertices of the rectangles in question do not fall exactly at intersections of the horizontal and vertical lines on the grid. This means that students need to approximate and this provides an extra challenge. Also providing a challenge is the fact that the grids have been drawn so that they are aligned with the diagonal of the rectangles rather than being aligned with the vertical and horizontal directions of the page. However, this choice of grid also makes it easier to reason about the reflections.
Type: Problem-Solving Task
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Type: Problem-Solving Task
This task provides students the opportunity to see how the mathematical ideas embedded in the standards and clusters mature over time. The task uses facts about supplementary, complementary, vertical, adjacent, and alternate interior angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure. It is a good introduction to writing paragraphs, 2-column, and/or flow chart proofs.
Type: Problem-Solving Task
This task is ideally suited for instruction purposes where students can take their time and develop several of the standards, as the mathematical content is directly related to, but somewhat exceeds, the content of the standard on sums of angles in triangles. Careful analysis of the angles requires students to construct valid arguments using abstract and quantitative reasoning. Producing the picture in part (c) helps students identify a common mathematical argument repeated multiple times. Students may use pattern blocks to develop the intuition for decomposing the hexagon into triangles.
Type: Problem-Solving Task
In this resource, students will decide how to use transformations in the coordinate plane to translate a triangle onto a congruent triangle. Exploratory examples are included to prompt analytical thinking.
Type: Problem-Solving Task
Student Center Activity
Students can practice answering mathematics questions on a variety of topics. With an account, students can save their work and send it to their teacher when complete.
Type: Student Center Activity
Tutorials
Students will investigate symmetry by rotating polygons 180 degrees about their center.
Type: Tutorial
In this video, we find missing angle measures from a variety of examples.
Type: Tutorial
In this tutorial, students are asked to prove two angles congruent when given limited information. Students need to have a foundation of parallel lines, transversals and triangles before viewing this video.
Type: Tutorial
This video introduces the concept of rigid transformation and congruent figures.
Type: Tutorial
This video demonstrates the effect of a dilation on the coordinates of a triangle.
Type: Tutorial
This video shows testing for similarity through transformations.
Type: Tutorial
This video gives the proof of sum of measures of angles in a triangle. This video is beneficial for both Algebra and Geometry students.
Type: Tutorial
Virtual Manipulative
This virtual manipulative is an interactive visual presentation of the rotation of a point around the origin of the coordinate system. The original point can be dragged to different positions and the angle of rotation can be changed with a 90° increment.
Type: Virtual Manipulative
Parent Resources
Educational Software / Tool
This resource is an online glossary to find the meaning of math terms. Students can also use the online glossary to find words that are related to the word typed in the search box. For example: Type in "transversal" and 11 other terms will come up. Click on one of those terms and its meaning is displayed.
Type: Educational Software / Tool
Problem-Solving Tasks
Students use interior and exterior angles to to verify attributes of an octagon and square. Students are given a tile pattern involving congruent regular octagons and squares.
Type: Problem-Solving Task
The purpose of this task is for students to find a way to decompose a regular hexagon into congruent figures. This is meant as an instructional task that gives students some practice working with transformations.
Type: Problem-Solving Task
Students' first experience with transformations is likely to be with specific shapes like triangles, quadrilaterals, circles, and figures with symmetry. Exhibiting a sequence of transformations that shows that two generic line segments of the same length are congruent is a good way for students to begin thinking about transformations in greater generality.
Type: Problem-Solving Task
This task has two goals: first to develop student understanding of rigid motions in the context of demonstrating congruence. Secondly, student knowledge of reflections is refined by considering the notion of orientation in part (b). Each time the plane is reflected about a line, this reverses the notions of ''clockwise'' and ''counterclockwise.''
Type: Problem-Solving Task
In this resource, students experiment with the reflection of a triangle in a coordinate plane.
Type: Problem-Solving Task
The purpose of this task is for students to apply a reflection to a single point. The standard asks students to apply the effect of a single transformation on two-dimensional figures. Although this problem only applies a reflection to a single point, it has high cognitive demand if the students are prompted to supply a picture. This is because the coordinates of the point (1000,2012) are very large. If students try to plot this point and the line of reflection on the usual x-y coordinate grid, then either the graph will be too big or else the point will lie so close to the line of reflection that it is not clear whether or not it lies on this line. A good picture requires a careful choice of the appropriate region in the plane and the corresponding labels. Moreover, reflections of two-dimensional figures are found by reflecting individual points.
Type: Problem-Solving Task
The task is intended for instructional purposes and assumes that students know the properties of rigid transformations. Note that the vertices of the rectangles in question do not fall exactly at intersections of the horizontal and vertical lines on the grid. This means that students need to approximate and this provides an extra challenge. Also providing a challenge is the fact that the grids have been drawn so that they are aligned with the diagonal of the rectangles rather than being aligned with the vertical and horizontal directions of the page. However, this choice of grid also makes it easier to reason about the reflections.
Type: Problem-Solving Task
Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
Type: Problem-Solving Task
This task provides students the opportunity to see how the mathematical ideas embedded in the standards and clusters mature over time. The task uses facts about supplementary, complementary, vertical, adjacent, and alternate interior angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure. It is a good introduction to writing paragraphs, 2-column, and/or flow chart proofs.
Type: Problem-Solving Task
This task is ideally suited for instruction purposes where students can take their time and develop several of the standards, as the mathematical content is directly related to, but somewhat exceeds, the content of the standard on sums of angles in triangles. Careful analysis of the angles requires students to construct valid arguments using abstract and quantitative reasoning. Producing the picture in part (c) helps students identify a common mathematical argument repeated multiple times. Students may use pattern blocks to develop the intuition for decomposing the hexagon into triangles.
Type: Problem-Solving Task
In this resource, students will decide how to use transformations in the coordinate plane to translate a triangle onto a congruent triangle. Exploratory examples are included to prompt analytical thinking.
Type: Problem-Solving Task