Integrated Science 3 Honors   (#2002450)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

While the content focus of this course is consistent with the Integrated Science 3 course, students will explore these concepts in greater depth. In general, the academic pace and rigor will be greatly increased for honors level course work.

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices

Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

General Information

Course Number: 2002450
Course Path:
Abbreviated Title: INTEG SCI 3 HON
Number of Credits: One (1) credit
Course Length: Year (Y)
Course Attributes:
  • Honors
  • Class Size Core Required
Course Type: Core Academic Course
Course Level: 3
Course Status: State Board Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Equally Rigorous Science

Educator Certifications

One of these educator certification options is required to teach this course.


Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Electricity:

Explore the topic of Electricity including: how it is transformed into other types of energy, how a circuit works, and electrical conductors and insulators with this interactive research page.

Type: Original Student Tutorial

Animal Adaptations:

Glimpse into the variety of animal adaptations on Earth and the reasons these adaptations allow different animals to survive in various environments with this interactive research page.

Type: Original Student Tutorial

Plant Adaptations:

Learn how plants are adapted to their environment, including their life cycles, responses, physical characteristics, and ability to survive harsh environments with this interactive research page.

Type: Original Student Tutorial

Human Body: Part 2 (Senses, Skin, Muscles, Skeleton):

Learn about organs and structures of the human body, including the senses, skin, muscles, and skeleton, with this interactive research page.

This is part 2 in a three-part series.

Type: Original Student Tutorial

Forms of Energy:

Explore forms of energy, including mechanical, electrical, heat, light, sound, and chemical, discover ways to investigate these forms of energy, and learn about related technology with this interactive tutorial.

Type: Original Student Tutorial

Climate Zones:

Explore the major climate zones on Earth and learn about the related weather patterns with this interactive research page.

Type: Original Student Tutorial

Space and the Florida Frontier: Part 3 Partners in Exploration:

Learn about the impact of the growth and development of space exploration on the culture and economy of Florida and how the inclusion of private partners helped reach new goals with this interactive tutorial.

This is part 3 in a three-part series. Click below to view the other tutorials in the series.

Type: Original Student Tutorial

Human Body: Part 3 (Liver, Pancreas, Kidneys, Intestines, and Bladder):

Learn about organs and structures of the human body, including the Liver, pancreas, kidneys, intestines, and bladder in this interactive research page.

This is part 3 in a three-part series.

Type: Original Student Tutorial

Space and the Florida Frontier: Part 2 The Space Shuttle Era:

Learn how the Space Shuttle program revived the area near Cape Canaveral, Florida, and how the possibility of living in space on the Space Station brought new jobs and excitement with this interactive tutorial.

This is part 2 in a three-part series. Click below to view the other tutorials in the series.

Type: Original Student Tutorial

Space and the Florida Frontier: Part 1 To the Moon:

Learn about the early days of NASA, the work at Cape Canaveral during the Moon missions, and how this work affected the people and economy of Florida with this interactive tutorial.

This is part 1 in a three-part series. Click below to view the other tutorials in the series.

Type: Original Student Tutorial

Being a Leader:

Learn more about how to empower and enourage others with your leadership skills in this interactive resiliency tutorial.

Type: Original Student Tutorial

Devin in the Bakery Part 1: Measuring the Mass of Solids:

Learn to measure and compare the mass of solids as Devin helps Chef Kyle in the bakery with this interactive tutorial.

Type: Original Student Tutorial

Human Body: Part 1 (Heart, Lungs, Stomach, Brain, Reproductive):

Learn about the heart, lungs, stomach, brain, and reproductive organs in this interactive research page on the organs and structures of the human body.

This is part 1 in a three-part series.

Type: Original Student Tutorial

The Water Cycle:

Learn about the water cycle's major stages and the importance of the ocean in the water cycle with this Interactive Science Research Page.

Type: Original Student Tutorial

Objects in the Solar System: Interactive Science Research Page:

Explore and compare objects in the solar system, including planets, moons, the Sun, comets, and asteroids, with this interactive research page.

Type: Original Student Tutorial

Pnyx Hill: Government in the Open Air:

Explore how weathering and erosion may have affected Pnyx Hill, the ancient Greek democratic meeting place which influenced our modern government with this interactive tutorial.

Type: Original Student Tutorial

Yikes! Strikes! Severe Weather:

Learn to identify different types of severe weather and the conditions that contribute to the formation of severe weather in this interactive tutorial.

Type: Original Student Tutorial

How Text Sections Convey an Author’s Purpose:

Explore excerpts from the extraordinary autobiography Narrative of the Life of Frederick Douglass, as you examine the author's purpose for writing and his use of the problem and solution text structure. By the end of this interactive tutorial, you should be able to explain how Douglass uses the problem and solution text structure in these excerpts to convey his purpose for writing.

Type: Original Student Tutorial

Identifying Rhetorical Appeals in "Eulogy of the Dog" (Part Two):

Continue to study George Vest's "Eulogy of the Dog" speech and his use of rhetorical appeals. In Part Two of this two-part series, you'll identify his use of ethos and pathos throughout his speech.

Make sure to complete Part One before beginning Part Two. Click HERE to launch Part One.

Type: Original Student Tutorial

Identifying Rhetorical Appeals in "Eulogy of the Dog" (Part One):

Read George Vest's "Eulogy of the Dog" speech in this two-part interactive tutorial. In this series, you'll identify and examine Vest's use of ethos, pathos, and logos in his speech. In Part One, you'll identify Vest's use of logos in the first part of his speech. In Part Two, you'll identify his use of ethos and pathos throughout his speech. 

Make sure to complete both part of this series! Click HERE to launch Part Two.

Type: Original Student Tutorial

That's So Epic: How Epic Similes Contribute to Mood (Part Two):

Continue to study epic similes in excerpts from The Iliad in Part Two of this two-part series. In Part Two, you'll learn about mood and how the language of an epic simile produces a specified mood in excerpts from The Iliad.

Make sure to complete Part One before beginning Part Two. Click HERE to view "That's So Epic: How Epic Similes Contribute to Mood (Part One)."

Type: Original Student Tutorial

That's So Epic: How Epic Similes Contribute to Mood (Part One):

Learn about how epic similes create mood in a text, specifically in excerpts from The Iliad, in this two-part series.

In Part One, you'll define epic simile, identify epic similes based on defined characteristics, and explain the comparison created in an epic simile.

In Part Two, you'll learn about mood and how the language of an epic simile produces a specified mood in excerpts from The Iliad. Make sure to complete both parts!

Click HERE to view "That's So Epic: How Epic Similes Contribute to Mood (Part Two)." 

Type: Original Student Tutorial

Risky Betting: Text Evidence and Inferences (Part Two):

Type: Original Student Tutorial

Risky Betting: Text Evidence and Inferences (Part One):

Read the famous short story “The Bet” by Anton Chekhov and explore the impact of a fifteen-year bet made between a lawyer and a banker in this three-part tutorial series.

In Part One, you’ll cite textual evidence that supports an analysis of what the text states explicitly, or directly, and make inferences and support them with textual evidence. By the end of Part One, you should be able to make three inferences about how the bet has transformed the lawyer by the middle of the story and support your inferences with textual evidence.

Make sure to complete all three parts!

Click HERE to launch "Risky Betting: Text Evidence and Inferences (Part Two)."

Click HERE to launch "Risky Betting: Analyzing a Universal Theme (Part Three)." 

Type: Original Student Tutorial

Analyzing Sound in Poe's "The Raven" :

Identify rhyme, alliteration, and repetition in Edgar Allan Poe's "The Raven" and analyze how he used these sound devices to affect the poem in this interactive tutorial.

Type: Original Student Tutorial

In the Driver's Seat: Character Interactions in Little Women:

Study excerpts from the classic American novel Little Women by Louisa May Alcott in this interactive English Language Arts tutorial. Using excerpts from chapter eight of Little Women, you'll identify key characters and their actions. You'll also explain how interactions between characters contributes to the development of the plot. 

Type: Original Student Tutorial

What it Means to Give a Gift: How Allusions Contribute to Meaning in "The Gift of the Magi":

Examine how allusions contribute to meaning in excerpts from O. Henry's classic American short story “The Gift of the Magi." In this interactive tutorial, you'll determine how allusions in the text better develop the key story elements of setting, characters, and conflict and explain how the allusion to the Magi contributes to the story’s main message about what it means to give a gift.

Type: Original Student Tutorial

Analyzing Imagery in Shakespeare’s "Sonnet 18":

Type: Original Student Tutorial

Newton's Insight: Standing on the Shoulders of Giants:

Discover how Isaac Newton's background, talents, interests, and goals influenced his groundbreaking work in this interactive tutorial.

This is part 4 in a 4-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Comparing Universal Themes in Shakespeare’s "Sonnet 18":

Study William Shakespeare's "Sonnet 18" to determine and compare two universal themes and how they are developed throughout the sonnet. 

Type: Original Student Tutorial

How Form Contributes to Meaning in Shakespeare’s "Sonnet 18":

Explore the form and meaning of William Shakespeare's “Sonnet 18.”  In this interactive tutorial, you’ll examine how specific words and phrases contribute to meaning in the sonnet, select the features of a Shakespearean sonnet in the poem, identify the solution to a problem, and explain how the form of a Shakespearean sonnet contributes to the meaning of "Sonnet 18."

Type: Original Student Tutorial

Analyzing Universal Themes in "The Gift of the Magi":

Analyze how O. Henry uses details to address the topics of value, sacrifice, and love in his famous short story, "The Gift of the Magi." In this interactive tutorial, you'll also determine two universal themes of the story.

Type: Original Student Tutorial

How Story Elements Interact in “The Gift of the Magi" – Part Two:

Explore key story elements in more excerpts from the classic American short story “The Gift of the Magi” by O. Henry.

In Part Two of this two-part series, you'll analyze how important information about two main characters is revealed through the context of the story’s setting and events in the plot. By the end of this tutorial, you should be able to explain how character development, setting, and plot interact in "The Gift of the Magi."

Make sure to complete Part One before beginning Part Two. Click HERE to launch Part One. 

Type: Original Student Tutorial

How Story Elements Interact in “The Gift of the Magi" -- Part One:

Explore key story elements in the classic American short story “The Gift of the Magi” by O. Henry. Throughout this two-part tutorial, you'll analyze how important information about two main characters is revealed through the context of the story’s setting and events in the plot. By the end of this tutorial series, you should be able to explain how character development, setting, and plot interact in excerpts from this short story.

Make sure to complete both parts! Click HERE to view "How Story Elements Interact in 'The Gift of the Magi' -- Part Two."

Type: Original Student Tutorial

Archetypes – Part Two: Examining Archetypes in The Princess and the Goblin:

Read more from the fantasy novel The Princess and the Goblin by George MacDonald in Part Two of this three-part series. By the end of this tutorial, you should be able to compare and contrast the archetypes of two characters in the novel.

Make sure to complete all three parts of this series in order to compare and contrast the use of archetypes in two texts.

Click HERE to view "Archetypes -- Part One: Examining an Archetype in The Princess and the Goblin."

Click HERE to view "Archetypes -- Part Three: Comparing and Contrasting Archetypes in Two Fantasy Stories." 

Type: Original Student Tutorial

Archetypes – Part One: Examining an Archetype in The Princess and the Goblin:

Learn to determine the important traits of a main character named Princess Irene in excerpts from the fantasy novel The Princess and the Goblin by George MacDonald. In this interactive tutorial, you’ll also identify her archetype and explain how textual details about her character support her archetype.  

Make sure to complete all three parts of this series in order to compare and contrast the use of archetypes in two texts.

Click HERE to view "Archetypes -- Part Two: Examining Archetypes in The Princess and the Goblin."

Click HERE to view "Archetypes -- Part Three: Comparing and Contrasting Archetypes in Two Fantasy Stories." 

Type: Original Student Tutorial

The Power to Cure or Impair: The Importance of Setting in "The Yellow Wallpaper" -- Part One:

Learn to identify aspects of setting and character as you analyze several excerpts from “The Yellow Wallpaper," a chilling short story by Charlotte Perkins Gilman that explores the impact on its narrator of being confined to mostly one room. You'll also determine how the narrator’s descriptions of the story’s setting better reveal her emotional and mental state.

This interactive tutorial is Part One in a two-part series. By the end of Part Two, you should be able to explain how the narrator changes through her interaction with the setting. Click below to launch Part Two.

The Power to Cure or Impair: The Importance of Setting in 'The Yellow Wallpaper' -- Part Two 

Type: Original Student Tutorial

The Power to Cure or Impair: The Importance of Setting in "The Yellow Wallpaper" -- Part Two:

Continue to examine several excerpts from the chilling short story “The Yellow Wallpaper” by Charlotte Perkins Gilman, which explores the impact on its narrator of being confined to mostly one room. In Part Two of this tutorial series, you'll determine how the narrator’s descriptions of the story’s setting reveal its impact on her emotional and mental state. By the end of this tutorial, you should be able to explain how the narrator changes through her interaction with the setting.

Make sure to complete Part One before beginning Part Two. Click HERE to launch "The Power to Cure or Impair: The Importance of Setting in 'The Yellow Wallpaper' -- Part One." 

Type: Original Student Tutorial

The Mystery of the Past: How the Form of a Villanelle Contributes to Meaning in "The House on the Hill":

Explore the mysterious poem “The House on the Hill” by Edwin Arlington Robinson in this interactive tutorial. As you explore the poem's message about the past, you’ll identify the features of a villanelle in the poem. By the end of this tutorial, you should be able to explain how the form of a villanelle contributes to the poem's meaning.

Type: Original Student Tutorial

A Giant of Size and Power – Part Two: How the Form of a Sonnet Contributes to Meaning in "The New Colossus":

Continue to explore the significance of the famous poem “The New Colossus” by Emma Lazarus, lines from which are engraved on the pedestal of the Statue of Liberty. 

In Part Two of this two-part series, you’ll identify the features of a sonnet in the poem "The New Colossus." By the end of this tutorial, you should be able to explain how the form of a sonnet contributes to the poem's meaning. 

Make sure to complete Part One before beginning Part Two.

Click HERE to launch "A Giant of Size and Power -- Part One: Exploring the Significance of 'The New Colossus.'"

Type: Original Student Tutorial

Analyzing the Beginning of The Red Umbrella – Part Two: How Setting Influences Characters:

Continue to examine how setting influences characters in excerpts from The Red Umbrella by Christina Diaz Gonzalez with this interactive tutorial.

This is part 2 in a two-part series. Make sure to complete Part One first. Click HERE to launch "Analyzing the Beginning of The Red Umbrella -- Part One: How Setting Influences Events." 

Type: Original Student Tutorial

A Giant of Size and Power -- Part One: Exploring the Significance of "The New Colossus":

In Part One, explore the significance of the famous poem “The New Colossus” by Emma Lazarus, lines from which are engraved on the pedestal of the Statue of Liberty. 

This famous poem also happens to be in the form of a sonnet. In Part Two of this two-part series, you’ll identify the features of a sonnet in the poem. By the end of this tutorial series, you should be able to explain how the form of a sonnet contributes to the poem's meaning. Make sure to complete both parts!

Click HERE to launch "A Giant of Size and Power -- Part Two: How the Form of a Sonnet Contributes to Meaning in 'The New Colossus.'"

Type: Original Student Tutorial

Analyzing the Beginning of The Red Umbrella – Part One: How Setting Influences Events:

Explore excerpts from the beginning of the historical fiction novel The Red Umbrella by Christina Diaz Gonzalez in this two-part series. In Part One, you'll examine how setting influences events. In Part Two, you'll examine how setting influences characters.

Make sure to complete both parts! Click HERE to launch Part Two.

Type: Original Student Tutorial

Physical Science Unit: Water Beach Vacation Lesson 17 Video:

This SaM-1 video provides the students with the optional "twist" for Lesson 17 and the Model Eliciting Activity (MEA) they have been working on in the Grade 3 Physical Science Unit: Water Beach Vacation. 

 

To see all the lessons in the unit please visit https://www.cpalms.org/page818.aspx.

Type: Original Student Tutorial

Physical Science Unit: Water Beach Vacation Lesson 14 Video:

This video introduces the students to a Model Eliciting Activity (MEA) and concepts related to conducting experiments so they can apply what they learned about the changes water undergoes when it changes state.  This MEA provides students with an opportunity to develop a procedure based on evidence for selecting the most effective cooler.

This SaM-1 video is to be used with lesson 14 in the Grade 3 Physical Science Unit: Water Beach Vacation. To see all the lessons in the unit please visit https://www.cpalms.org/page818.aspx.

Type: Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Reading into Words with Multiple Meanings:

Explore Robert Frost's poem "Mending Wall" and examine words, phrases, and lines with multiple meanings. In this interactive tutorial, you'll analyze how these multiple meanings can affect a reader’s interpretation of the poem.

Type: Original Student Tutorial

From Myth to Short Story: Drawing on Source Material – Part Two:

Examine the topics of transformation and perfection as you read excerpts from the “Myth of Pygmalion” by Ovid and the short story “The Birthmark” by Nathaniel Hawthorne. By the end of this two-part interactive tutorial series, you should be able to explain how the short story draws on and transforms source material from the original myth. 

This tutorial is the second in a two-part series. Click HERE to launch Part One.

Type: Original Student Tutorial

From Myth to Short Story: Drawing on Source Material – Part One:

Examine the topics of transformation and perfection as you read excerpts from the “Myth of Pygmalion” by Ovid and the short story “The Birthmark” by Nathaniel Hawthorne. By the end of this two-part interactive tutorial series, you should be able to explain how the short story draws on and transforms source material from the original myth.  

This tutorial is the first in a two-part series. Click HERE to launch Part Two.

Type: Original Student Tutorial

Don't Plagiarize: Cite Your Sources!:

Learn more about that dreaded word--plagiarism--in this interactive tutorial that's all about citing your sources, creating a Works Cited page, and avoiding academic dishonesty!

Type: Original Student Tutorial

Avoiding Plagiarism and Citing Sources:

Learn more about that dreaded word--plagiarism--in this interactive tutorial that's all about citing your sources and avoiding academic dishonesty!

Type: Original Student Tutorial

Analyzing Word Choice in Emerson's "Self-Reliance": Part 2:

Explore excerpts from Ralph Waldo Emerson's essay "Self-Reliance" in this two-part series. This tutorial is Part Two. In this tutorial, you will continue to examine excerpts from Emerson's essay that focus on the topic of traveling. You'll examine word meanings and determine the connotations of specific words. You will also analyze the impact of specific word choices on the meaning of this portion of the essay.

Make sure to complete Part One first. Click HERE to launch Part One.

Type: Original Student Tutorial

Analyzing Word Choice in Emerson's "Self-Reliance": Part 1:

Explore excerpts from Ralph Waldo Emerson's essay "Self-Reliance" in this two-part interactive tutorial series. You will examine word meanings, examine subtle differences between words with similar meanings, and think about the emotions or associations that are connected to specific words. Finally, you will analyze the impact of specific word choices on the meaning of these excerpts.

Make sure to complete both parts! Click HERE to launch Part Two.

Type: Original Student Tutorial

Analyzing Figurative Meaning in Emerson's "Self-Reliance": Part 2:

Explore excerpts from Ralph Waldo Emerson's essay "Self-Reliance" in this interactive two-part tutorial. This tutorial is Part Two. In this two-part series, you will learn to enhance your experience of Emerson's essay by analyzing his use of the word "genius." You will analyze Emerson's figurative meaning of "genius" and how he develops and refines the meaning of this word over the course of the essay.

Make sure to complete Part One before beginning Part Two. Click HERE to view Part One.

Type: Original Student Tutorial

Analyzing Figurative Meaning in Emerson's "Self-Reliance": Part 1:

Explore excerpts from Ralph Waldo Emerson's essay "Self-Reliance" in this interactive two-part tutorial. In Part One, you’ll learn to enhance your experience of a text by analyzing its use of a word’s figurative meaning. Specifically, you'll examine Emerson's figurative meaning of the key term "genius." In Part Two, you’ll learn how to track the development of a word’s figurative meaning over the course of a text. 

Make sure to complete both parts of the tutorial! Click HERE to launch Part Two.

Type: Original Student Tutorial

Hidden Mutations:

Dive into genetic mutations and learn how they can alter the phenotypes of organisms.

Type: Original Student Tutorial

Structure and Function of Fungi: Asexual and Sexual Reproduction (2 of 3):

Learn about asexual and sexual reproduction of fungi in this interactive tutorial. This is Part 2 of 3 in this series on the Structure and Function of Fungi. 

Click  to open Part 1, Basic Characteristics and Structures

Click HERE to open Part 3, Nutrition and Mutualistic Relationships

Type: Original Student Tutorial

Analyzing Word Choices in Poe's "The Raven" -- Part Two:

Practice analyzing word choices in "The Raven" by Edgar Allan Poe, including word meanings, subtle differences between words with similar meanings, and emotions connected to specific words. In this interactive tutorial, you will also analyze the impact of specific word choices on the meaning of the poem.

This is Part Two of a two-part series. Part One should be completed before beginning Part Two. Click HERE to open Part One.

Type: Original Student Tutorial

Analyzing Word Choices in Poe's "The Raven" -- Part One:

Practice analyzing word choices in "The Raven" by Edgar Allan Poe in this interactive tutorial. In this tutorial, you will examine word meanings, examine subtle differences between words with similar meanings, and think about emotions connected to specific words. You will also analyze the impact of specific word choices on the meaning of the poem.

This tutorial is Part One of a two-part series on Poe's "The Raven." Click HERE to open Part Two.

Type: Original Student Tutorial

Biodiversity and Non-native Species:

See how non-native species can impact ecosystem biodiversity to create problems for native species in this interactive tutorial.

Type: Original Student Tutorial

A Poem in 2 Voices: Jekyll and Hyde:

Learn how to create a Poem in 2 Voices in this interactive tutorial. This tutorial is Part Three of a three-part series. In this tutorial, you will learn how to create a Poem in 2 Voices using evidence drawn from a literary text: The Strange Case of Dr. Jekyll and Mr. Hyde by Robert Louis Stevenson.

You should complete Part One and Part Two of this series before beginning Part Three.   

Click HERE to launch Part One. Click HERE to launch Part Two. 

Type: Original Student Tutorial

The Voices of Jekyll and Hyde, Part Two:

Get ready to travel back in time to London, England during the Victorian era in this interactive tutorial that uses text excerpts from The Strange Case of Dr. Jekyll and Mr. Hyde. This tutorial is Part Two of a three-part series. You should complete Part One before beginning this tutorial. In Part Two, you will read excerpts from the last half of the story and practice citing evidence to support analysis of a literary text. In the third tutorial in this series, you’ll learn how to create a Poem in 2 Voices using evidence from this story. 

Make sure to complete all three parts! Click to HERE launch Part One. Click HERE to launch Part Three. 

Type: Original Student Tutorial

Its all about Mood: Bradbury's "Zero Hour":

Learn how authors create mood in a story through this interactive tutorial. You'll read a science fiction short story by author Ray Bradbury and analyze how he uses images, sound, dialogue, setting, and characters' actions to create different moods. This tutorial is Part One in a two-part series. In Part Two, you'll use Bradbury's story to help you create a Found Poem that conveys multiple moods.

When you've completed Part One, click HERE to launch Part Two.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Conditions for Natural Selection:

Explore three conditions required for natural selection and see how these conditions lead to allele frequency shifts in a population. 

Type: Original Student Tutorial

Phosphorus in the Everglades:

Learn how phosphorus pollution can lead to changes in the Everglades. 

Type: Original Student Tutorial

The Voices of Jekyll and Hyde, Part One:

Practice citing evidence to support analysis of a literary text as you read excerpts from one of the most famous works of horror fiction of all time, The Strange Case of Dr. Jekyll and Mr. Hyde. 

This tutorial is Part One of a three-part tutorial. In Part Two, you'll continue your analysis of the text. In Part Three, you'll learn how to create a Poem in 2 Voices using evidence from this story. Make sure to complete all three parts! 

Click HERE to launch Part Two. Click HERE to launch Part Three. 

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Structure and Function of Fungi: Basic Characteristics and Structures (1 of 3):

Learn about the basic characteristics and structures of fungi in Part 1 of 3 in this series on the Structure and Function of Fungi.

Click  to open Part 2, Asexual and Sexual Reproduction

Click HERE to open Part 3, Nutrition and Mutualistic Relationships

Type: Original Student Tutorial

Structure and Function of Fungi: Nutrition and Mutualistic Relationships (3 of 3):

Learn about the nutrition and mutualistic relationships of fungi in this interactive tutorial. This is Part 3 of 3 in this series on the Structure and Function of Fungi. 

Click  to open Part 1, Basic Characteristics and Structures

Click HERE to open Part 2, Asexual and Sexual Reproduction

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

The Human Reproductive System, Part 1:

Explore the genetic advantage of sexual reproduction, describe the basic anatomy and physiology of both the male and female human reproductive systems, describe the process of human development leading up to birth, and identify major changes associated with each trimester of pregnancy.

This interactive tutorial is part 1 in a two-part series. Click here to 

Type: Original Student Tutorial

The Human Reproductive System (Part 2):

Explore the process of human development leading up to birth, and identify major changes associated with each trimester of pregnancy.

This interactive tutorial is part 2 in a two-part series. Click here to launch .

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Avoiding Plagiarism: It's Not Magic:

Learn how to avoid plagiarism in this interactive tutorial. You will also learn how to follow a standard format for citation and how to format your research paper using MLA style. Along the way, you will also learn about master magician Harry Houdini. This tutorial is Part Two of a two-part series on research writing.

Be sure to complete Part One first. Click to view Part One.

Type: Original Student Tutorial

Migration in the Kenyan Savannah:

Examine migration and factors affecting both population sizes and distributions of key species in the Kenyan savannah with this interactive tutorial. 

Type: Original Student Tutorial

Interactions among Organisms: Kenya:

Explore examples of mutualism, competition, and predation in the Kenyan savannah ecosystem. 

Type: Original Student Tutorial

Untangling Food Webs:

Learn how living organisms can be organized into food webs and how energy is transferred through a food web from producers to consumers to decomposers. This interactive tutorial also includes interactive knowledge checks.

Type: Original Student Tutorial

Research Writing: It's Not Magic:

Learn about paraphrasing and the use of direct quotes in this interactive tutorial about research writing. Along the way, you'll also learn about master magician Harry Houdini. This tutorial is part one of a two-part series, so be sure to complete both parts.

Check out part two—Avoiding Plaigiarism: It's Not Magic here.

Type: Original Student Tutorial

It's all about Mood: Creating a Found Poem:

Learn how to create a Found Poem with changing moods in this interactive tutorial. This tutorial is Part Two of a two-part series. In Part One, students read “Zero Hour,” a science fiction short story by author Ray Bradbury and examined how he used various literary devices to create changing moods. In Part Two, students will use words and phrases from “Zero Hour” to create a Found Poem with two of the same moods from Bradbury's story.

Click HERE to launch Part One.

Type: Original Student Tutorial

Methylmercury in the Everglades:

Explore the impact of methylmercury pollution in the Everglades wetland ecosystem.

Type: Original Student Tutorial

Happy Halloween! Textual Evidence and Inferences:

Cite text evidence and make inferences about the "real" history of Halloween in this spooky interactive tutorial. 

Type: Original Student Tutorial

Plagiarism: What Is It? How Can I Avoid It?:

Learn more about that dreaded word--plagiarism--in this interactive tutorial that's all about citing your sources and avoiding academic dishonesty!

Type: Original Student Tutorial

Periphyton in the Everglades:

Explore species interdependence focusing on roles played by periphyton in the Everglades ecosystem with this interactive tutorial.

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Beyond Natural Selection: Mechanisms of Evolution:

Explore mechanisms of evolutionary change other than natural selection such as mutation, gene flow, and genetic drift in this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

Cyberwar! Citing Evidence and Making Inferences:

Learn how to cite evidence and draw inferences in this interactive tutorial. Using an informational text about cyber attacks, you'll practice identifying text evidence and making inferences based on the text.

Type: Original Student Tutorial

Go for the Gold: Writing Claims and Using Evidence:

Learn how to define and identify claims being made within a text. This tutorial will also show you how evidence can be used effectively to support the claim being made. Lastly, this tutorial will help you write strong, convincing claims of your own.

Type: Original Student Tutorial

Westward Bound: Exploring Evidence and Inferences:

Learn to identify explicit textual evidence and make inferences based on the text. In this interactive tutorial, you'll sharpen your analysis skills while reading about the famed American explorers, Lewis and Clark, and their trusted companion, Sacagawea. You'll practice analyzing the explicit textual evidence wihtin the text, and you'll also make your own inferences based on the available evidence. 

Type: Original Student Tutorial

A Study in Sustainability:

Learn how individual and societal choices affect sustainability and explore ways that you can reduce your impact on the environment with this interactive tutorial.

Type: Original Student Tutorial

The Mystery of Muscle Cell Metabolism:

Explore the mystery of muscle cell metabolism and how cells are able to meet the need for a constant supply of energy. In this interactive tutorial, you'll identify the basic structure of adenosine triphosphate (ATP), explain how ATP’s structure is related it its job in the cell, and connect this role to energy transfers in living things.

Type: Original Student Tutorial

Enzymes are the Stuff of Life:

At any instant in your life, millions and millions of enzymes are hard at work in your body as well as all around you making your life easier!

By the end of this tutorial you should be able to describe how enzymes speed up most biochemical reactions as well as identify the various factors that affect enzyme activity like pH and temperature.

Type: Original Student Tutorial

Sustainability:

Learn the definition of "sustainability" and understand how our throw away consumer lifestyle has affected the environment in a negative way. In this interactive tutorial, you'll explore possible solutions to prevent further harm to the environment.

Type: Original Student Tutorial

Wild Words: Analyzing the Extended Metaphor in "The Stolen Child":

Learn to identify and analyze extended metaphors using W.B. Yeats' poem, "The Stolen Child." In this interactive tutorial, we'll examine how Yeats uses figurative language to express the extended metaphor throughout this poem. We'll focus on his use of these seven types of imagery: visual, auditory, gustatory, olfactory, tactile, kinesthetic, and organic. Finally, we'll analyze how the poem's extended metaphor conveys a deeper meaning within the text.

Type: Original Student Tutorial

Natural Selection:

Describe the conditions required for natural selection and tell how it can result in changes in species over time. In this interactive tutorial, follow Charles Darwin through a life of exploration, observation, and experimentation to see how he developed his ideas.

Type: Original Student Tutorial

Set Sail: Analyzing the Central Idea:

Learn to identify and analyze the central idea of an informational text. In this interactive tutorial, you'll read several informational passages about the history of pirates. First, you'll learn the four-step process for pinpointing the central idea. Then you'll analyze each passage to see how the central idea is developed throughout the text.

Type: Original Student Tutorial

Evolution: Examining the Evidence:

Learn how to identify explicit evidence and understand implicit meaning in a text.

You should be able to explain how different types of scientific evidence support the theory of evolution, including direct observation, fossils, DNA, biogeography, and comparative anatomy and embryology.

Type: Original Student Tutorial

Energy and Matter Movement through Biogeochemical Cycles:

Learn how to trace matter and energy through living and non-living systems and understand that matter and energy are transferred on a global scale.

Type: Original Student Tutorial

Earliest Beginnings:

Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.

Type: Original Student Tutorial

Changing with the Times: Variation within Ecosystems:

Explore how environmental changes at different time scales affect living organisms within ecosystems in this interactive tutorial.

Type: Original Student Tutorial

"The Last Leaf" – Making Inferences:

Learn how to make inferences based on the information included in the text in this interactive tutorial. Using the short story "The Last Leaf" by O. Henry, you'll practice identifying both the explicit and implicit information in the story. You'll apply your own reasoning to make inferences based on what is stated both explicitly and implicitly in the text. 

Type: Original Student Tutorial

"Beary" Good Details:

Join Baby Bear to answer questions about key details in his favorite stories with this interactive tutorial. Learn about characters, setting, and events as you answer who, where, and what questions.

Type: Original Student Tutorial

Surviving Extreme Conditions:

In this tutorial, you will practice identifying relevant evidence within a text as you read excerpts from Jack London's short story "To Build a Fire." Then, you'll practice your writing skills as you draft a short response using examples of relevant evidence from the story.

Type: Original Student Tutorial

ATP: Fuel for Cells:

Explore how cells use ATP as an energy source for cellular activities in this interactive tutorial.

Type: Original Student Tutorial

Exploring Texts:

Learn how to make inferences using the novel Hoot in this interactive tutorial. You'll learn how to identify both explicit and implicit information in the story to make inferences about characters and events.

Type: Original Student Tutorial

The Joy That Kills:

Learn how to make inferences when reading a fictional text using the textual evidence provided. In this tutorial, you'll read the short story "The Story of an Hour" by Kate Chopin. You'll practice identifying what is directly stated in the text and what requires the use of inference. You'll practice making your own inferences and supporting them with evidence from the text.

Type: Original Student Tutorial

Observation vs. Inference:

Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.

Type: Original Student Tutorial

Cool Case Files:

Learn that a scientific theory is the culmination of many experiments and supplies the most powerful explanation that scientists have to offer with this interactive tutorial.

Type: Original Student Tutorial

Cancer: Mutated Cells Gone Wild!:

Explore the relationship between mutations, the cell cycle, and uncontrolled cell growth which may result in cancer with this interactive tutorial.

Type: Original Student Tutorial

Population Interactions:

Explore population interactions and how those interactions can affect population size in this interactive tutorial. You'll also learn about competition, predation and symbiosis.

Type: Original Student Tutorial

Diagramming Diversity 1:

Learn how living organisms are classified according to their characteristics, which reflects their evolutionary history and relationships, as you complete this interactive tutorial.

Type: Original Student Tutorial

Diagramming Diversity II:

Learn to explain how a phylogenetic tree, or cladogram, is used to classify living organisms based on inherited similarities, and how it relates to other methods of hierarchical classification.

Type: Original Student Tutorial

Water and Life:

Learn how the chemical properties of water relate to its physical properties and make it essential for life with this interactive tutorial.

Type: Original Student Tutorial

Classification using DNA:

Learn how to explain differences in genetic and non-genetic classification methods. You should also know why genetic evidence is very powerful for understanding evolutionary relationships among organisms.

Type: Original Student Tutorial

Classification of Living Organisms:

Explore the characteristics of domains and kingdoms used to classify living organisms with this interactive tutorial. You also will learn more about the reasons behind how and why this classification is done.

Type: Original Student Tutorial

Question Quest:

Learn to distinguish between questions that can be answered by science and questions that science cannot answer. This interactive tutorial will help you distinguish between science and other ways of knowing, including art, religion, and philosophy.

Type: Original Student Tutorial

Diving the Depths of Underwater Life:

Learn how the distribution of aquatic life forms is affected by light, temperature, and salinity with this interactive tutorial.

Type: Original Student Tutorial

Impact of Biotechnology:

Learn how to identify and define types of biotechnology and consider the impacts of biotechnologies on the individual, society and the environment in this interactive tutorial.

Type: Original Student Tutorial

Climbing Around the Hominin Family Tree:

Learn to identify basic trends in the evolutionary history of humans, including walking upright, brain size, jaw size, and tool use in "Climbing Around the Hominin Family Tree" online tutorial.

Type: Original Student Tutorial

Analyzing an Author’s Use of Juxtaposition in Jane Eyre (Part Two):

In Part Two of this two-part series, you'll continue to explore excerpts from the Romantic novel Jane Eyre by Charlotte Brontë. In this tutorial, you'll examine the author's use of juxtaposition, which is a technique of putting two or more elements side by side to invite comparison or contrast. By the end of this tutorial, you should be able to explain how the author’s use of juxtaposition in excerpts from the first two chapters of Jane Eyre defines Jane’s perspective regarding her treatment in the Reed household.

Make sure to complete Part One before beginning Part Two. Click HERE to view Part One. 

Type: Original Student Tutorial

Risky Betting: Analyzing a Universal Theme (Part Three):

Dive deeper into the famous short story “The Bet” by Anton Chekhov and explore the impact of a fifteen-year bet made between a lawyer and a banker.

In Part Three, you’ll learn about universal themes and explain how a specific universal theme is developed throughout “The Bet.”

Make sure to complete the first two parts in the series before beginning Part three. Click HERE to view Part One. Click HERE to view Part Two.

Type: Original Student Tutorial

Educational Games

Shoot an Electron:


This interesting game is to hit the target located opposite a electron gun. The electron gun will fire an electron. This electron must not hit any walls or obstacles during the attempt. The user may direct the electron along a path by placing stationary positive and negative charges at various locations. This game will help support learning about the concept of the electric field, which is created when electrons repel other electrons.

Type: Educational Game

The Control of the Cell Cycle:

The Control of the Cell Cycle educational game is based on the 2001 Nobel Prize in Physiology or Medicine, which was awarded for discoveries concerning the control of the cell cycle.

Type: Educational Game

EvoDots - Software for Evolutionary Analysis:

The software application, which allows the students to simulate natural selection in a population of dots, goes along with a tutorial which is also at this site.

Type: Educational Game

Lesson Plans

Holidays that Celebrate America:

In this lesson plan, students will explore the history and meaning behind various patriotic holidays and make personal connections with those holidays including, Constitution Day, Memorial Day, Veteran’s Day, Patriot Day, President’s Day, Independence Day, and Medal of Honor Day.

 

Type: Lesson Plan

The Surprising World of Complex Systems:

This lesson introduces students to complex systems and to basic concepts from the field of system dynamics that lie at the heart of systems thinking. These concepts include stocks and flows, feedback loops, unintended consequences, and the basic principle that the behavior of complex systems can best be understood by looking at the system as a whole, and specifically by analyzing the system’s underlying structure. The lesson introduces these topics through an immersion in (and a role-play simulation of) the dynamics of urban recycling systems, many of which have been thrown into crisis in the past two years. Through this current-affairs example of complex systems in crisis, we identify some key structural features that help to explain how these systems behave over time. We also discover how well-intentioned action can cause negative unintended consequences when we try to intervene in a complex system without understanding how it operates.

Type: Lesson Plan

CO2: Find Out What It Means to You:

This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate. 

Type: Lesson Plan

Meet the Family: Investigating Primate Relationships:

In this lesson students will see the different types of evidence scientists use to understand evolutionary relationships among organisms. They will first practice by using shared physical characteristics to predict relationships among members of the cat family and then use this approach to predict primate relationships. They will compare their predictions to evidence provided by analyzing amino acid sequences and build a phylogenetic tree based on these sequences. Finally, they will look at the tree in the context of time in order to see divergence times.

Type: Lesson Plan

Perspectives Video: Experts

Pendulums and Energy Transformations:

Explore how pendulums show the transformation of gravitational potential energy to kinetic energy and back with Dr. Simon Capstick in this engaging video. Don't miss his broken-nose defying test of the physics with a bowling ball pendulum.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

MicroGravity Sensors & Statistics:

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Recognizing Redox Reactions:

Chemistry is pretty sweet. Also tasty if you understand oxidation and reduction reactions, but it may take a little MacGyvering.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Severe Weather Formation:

In a fog about weather patterns? This climatologist will demystify the topic for you.

Type: Perspectives Video: Expert

El Niño and La Niña:

Learn how the ocean pressures the climate into changing.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Biochemistry and Medicine:

Advances in "big data" are leading to rapid developments in personalized medicine. Learn more!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Electromagnetic Robot Muscles:

Dr. Oates uses engineering practices to design artificial muscles that react to electrostatic fields.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations and Genetic Diversity:

Mutations don't just happen to comic book heroes and villains. Learn more about this natural biological phenomenon!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations, the Cell Cycle, and Cancer:

Sometimes the cell cycle gets derailed a bit, which can lead to the development of tumors. Learn more about mutations!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Measuring Biodiversity to Evaluate Human Impact:

Humans impact the environment in a number of ways. Learn more about how we interact with nature!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Coral Varieties and their Place in Aquatic Systems:

Learn all the information about coral and corral that knowledge!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Light Spectrum for Growing Plants:

Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Adaptation to Low Light Aquatic Environments:

This biologist will brighten your day with a discussion on colorful (or not) ways that marine organisms have adapted to ocean lighting.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Spills and Biodiversity:

Do you think you know oil there is to know about human impact on the environment? Let this biologist explain.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical Environment and Natural Selection:

This video is a natural selection for learning about evolution.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Methods of Evolution in Animal Populations Big and Small:

Interested in how evolution happens? Drift into this video and go with the flow.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Fingerprinting:

Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

How do Fish Stay in their Zone?:

Sink into science as a biologist floats a few thoughts about physiological adaptations marine animals use to stay at the right depth.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Dissolved Oxygen in Aquatic Ecosystems:

Dissolved oxygen is important to all life in and out of the water! Learn more in this video!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protect our Fisheries from Invasive Species:

Lionfish and other species are roaring past our native populations. Learn more.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Sea Turtle Conservation:

Watch as this scientist shines a light on a type of pollution that affects sea turtles.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Electromagnetism:

The director of the National High Magnetic Field Laboratory describes electromagnetic waves.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Negative Impacts of Oil Spills:

Learn how the Woods Hole Oceanographic Institution experts track oil-soaked sand patties on the Gulf Coast to monitor possible negative environmental impacts from the Deepwater Horizon oil spill.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Viticulture and Biotechnology:

A viticulture scientist explains grape expectations for medicine and society.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Ethanol Fuel:

Why can't you put Ethanol fuel in a boat motor?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Forces and Power in Flint Knapping:

Sharpen your knowledge by understanding the forces used to make stone tools.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Seeing into Atoms with Electromagnetic Energy:

If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Making Charcoal:

Get sooted up and join a collier as he discusses charcoal production at historic Mission San Luis.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using Infrared Light to Analyze Materials:

One way to figure out what something is made of is to see what kinds of wavelengths of electromagnetic energy it can absorb.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using X-rays in Archeology:

An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Plan Your Archaeological Excavations with Radar Waves! :

Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using the Electromagnetic Spectrum to Detect Hydrogen Fires:

Learn more about how splitting light beams helps researchers detect hydrogen fires for the space program.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Estimating Oil Seep Production by Bubble Volume:

<p>You'll need to bring your computer skills and math knowledge to estimate oil volume and rate as it seeps from the ocean floor. Dive in!</p>

Type: Perspectives Video: Professional/Enthusiast

Optical Spectroscopy: Using Electromagnetic Waves to Detect Fires:

<p>Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.</p>

Type: Perspectives Video: Professional/Enthusiast

Oil Seeps in the Gulf of Mexico:

Immerse yourself in deep-sea geology to learn more about naturally-occurring oil seeps.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Shaping Pottery with Angular Momentum:

Factors to consider when making pottery on the wheel are discussed, but not in a way that would make your head spin.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Text Resources

Case Study: Understanding How Copyright Law Impacts A Production:

Using this case study, students can answer the question, "What are the limits of fair use regarding copyright protection?"

Type: Text Resource

Case Study: Getting Noticed in the Workplace:

Using this case study students can discuss "How can an employee"s behaviors and actions drive their career stability and path?"

Type: Text Resource

Magnetism:

This site presents the basic ideas of magnetism and applies these ideas to the earth's magnetic field. There are several useful diagrams and pictures interspersed throughout this lesson, as well as links to more detailed subjects. This is an introduction to a larger collection on exploring the Earth's magnetosphere. A Spanish translation is available.

Type: Text Resource

What you Need to Know about Energy:

This site from the National Academy of Sciences presents uses, sources, costs, and efficiency of energy.

Type: Text Resource

Case Study: Understanding the Psychological Effects of Composition:

Using this case study, students can answer the question, "How does the composition of a scene influence how the viewer feels?"

Type: Text Resource

Tutorials

Oxidation and Reduction Review From Biological Point-of-View:

This Khan Academy video explains oxidation and reduction reactions from a biological point of view.

Type: Tutorial

Taxonomy and the Tree of Life:

This Khan Academy video discusses the science of taxonomy and where humans fit into the tree of life.

Type: Tutorial

Species:

This Khan Academy video explains the definition of species and provides examples of animals that belong to the same species.

Type: Tutorial

Embryonic Stem Cells:

This Khan Academy video describes what happens to a zygote as it becomes an embyro. It further explains what a stem cell is and discusses why there are questions concerning the use of stem cells.

Type: Tutorial

Variation in a Species:

This Khan Academy video explains how variation can be introduced into a species and the importance of sexual reproduction in this process.

Type: Tutorial

Natural Selection and the Owl Butterfly:

This Khan Academy tutorial explains how the owl butterfly might have evolved the spots on its wings through natural selection.

Type: Tutorial

ATP: Adenosine Triphosphate:

This Khan Academy video explains how the molecule ATP stores the energy needed for biological systems within organisms.

Type: Tutorial

Viruses:

This introduction to viruses by the Khan Academy addresses the question: Are viruses alive? How viruses enter cells and replicate is discussed in detail.

Type: Tutorial

Bacteria:

This video from the Khan Academy introduces the symbiotic relationship between the many bacteria that live inside the human body. The basics of bacteria structure, reproduction, and bacterial infections are discussed.

Type: Tutorial

Cancer:

This Khan Academy video discusses the basics of cancer. The relationship between mutation, the cell cycle and uncontolled cell growth is explained.

Type: Tutorial

The Role of Vitamins in Human Nutrition:

This tutorial will help you to understand the role that vitamins play in human nutrition. Vitamins interact with enzymes to allow them to function more effectively. Though vitamins are not consumed in metabolism, they are vital for the process of metabolism to occur.

This challenging tutorial addresses the concept at a high level of complexity.

Type: Tutorial

Maturation of the Follicle and Oocyte:

This tutorial will help you to understand the function of the follicle. Each follicle is a single egg cell surrounded by several layers of follicle cells. An ovary consists of many follicles. The follicle cells protect and nourish the egg prior to its release into the oviducts during ovulation.

Type: Tutorial

Rock 'n Roll Weather:

This resource is a basic introduction to the types of severe weather. Students will learn about the formation of tornadoes, lightning, floods, and hurricanes. Images of each weather system also accompany each section.

Type: Tutorial

Conserving Our Spectacular, Vulnerable Coral Reefs :

How do coral reef conservationists balance the environmental needs of the reefs with locals who need the reefs to survive? Joshua Drew draws on the islands of Fiji and their exemplary system of protection, called "connectivity", which also keep the needs of fishermen in mind.

Type: Tutorial

How Polarity Makes Water Behave Strangely:

Water is both essential and unique. Many of its particular qualities stem from the fact that it consists of two hydrogen atoms and one oxygen, therefore creating an unequal sharing of electrons. From fish in frozen lakes to ice floating on water, Christina Kleinberg describes the effects of polarity.

Type: Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

The Carbon Cycle:

What exactly is the carbon cycle? Nathaniel Manning provides a basic look into the cyclical relationship of carbon, humans and the environment.

Type: Tutorial

Dead Stuff: The Secret Ingredient in Our Food Chain:

When you picture the lowest levels of the food chain, you might imagine herbivores happily munching on lush, living green plants. But this idyllic image leaves out a huge (and slightly less appetizing) source of nourishment: dead stuff. John C. Moore details the "brown food chain," explaining how such unlikely delicacies as pond scum and animal feces contribute enormous amounts of energy to our ecosystems.

Type: Tutorial

How Does Cancer Spread Through the Body?:

This TED-ED original lesson explains the three common routes of metastasis. Cancer usually begins with one tumor in a specific area of the body. But if the tumor is not removed, cancer has the ability to spread to nearby organs as well as places far away from the origin, like the brain. How does cancer move to these new areas and why are some organs more likely to get infected than others? Ivan Seah Yu Jun explains the three common routes of metastasis.

Type: Tutorial

What Causes Antibiotic Resistance?:

This short video describes the process of antibiotic resistance. Right now, you are inhabited by trillions of micro organisms. Many of these bacteria are harmless (or even helpful!), but there are a few strains of ‘super bacteria' that are pretty nasty -- and they're growing resistant to our antibiotics. Why is this happening? Kevin Wu details the evolution of this problem that presents a big challenge for the future of medicine.

Type: Tutorial

The Case of the Vanishing Honeybees:

In the past decade, the US honeybee population has been decreasing at an alarming and unprecedented rate. While this is obviously bad news for honeypots everywhere, bees also help feed us in a bigger way -- by pollinating our nation's crops. Emma Bryce investigates potential causes for this widespread colony collapse disorder.

Type: Tutorial

Activation Energy-Kickstarting Chemical Reactions:

Chemical reactions are constantly happening in your body -- even at this very moment. But what catalyzes these important reactions? This short video explains how enzymes assist the process, while providing a light-hearted way to remember how activation energy works.

Type: Tutorial

The Secret Life of Plankton:

This short video opens up the oceans' microscopic ecosystem, revealing its beauty and complexity. Footage from the Plankton Chronicles Project is used to create a video designed to ignite wonder and curiosity about this hidden world that underpins our own food chain.

Type: Tutorial

How Do Cancer Cells Behave Differently From Healthy Ones?:

How do cancer cells grow? How does chemotherapy fight cancer (and cause negative side effects)? The answers lie in cell division. George Zaidan explains how rapid cell division is cancer's "strength" -- and also its weakness.

Type: Tutorial

Interactive Carbon Lab:

This lab simulation will allow you to explore how carbon circulates through the environment. Through data collection and analysis, you will experiment with the impact that humans are having on the cycling of carbon and make data based predictions on how these impacts may change environmental outcomes to the year 2100.

Type: Tutorial

Malaria: Human Host:


When a malaria-carrying mosquito bites a human host, the malaria parasite enters the bloodstream, multiplies in the liver cells, and is then released back into the bloodstream, where it infects and destroys red blood cells. This animation will help you to understand the process of malarial infection.

Type: Tutorial

Molecular Clock:

Molecular clocks are models that use mutation rates to measure evolutionary time. Mutations tend to accumulate at a constant rate for related species. The rate of mutations is the ticking that powers a molecular clock. This tutorial will help the learners understand this concept in order to recognize how species diverge from a common ancestors.

Type: Tutorial

Glycolysis:

This tutorial will help the learners understand glycolysis, which is the process of enzymes breaking down glucose to release energy.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Oxidation and Reduction in Cellular Respiration:

This video explains oxidation and reduction in cellular respiration.

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Birds of Paradise: Competition among birds:

This video shows mating displays and courtship behavior of Birds of Paradise. These birds display bright colors and visually stunning behaviors during courtship. 

Type: Video/Audio/Animation

Marine fossils in the Arctic landscape:

In this video, research is presented describing scientific studies of marine fossils found in Arctic regions.

Type: Video/Audio/Animation

Development of the Human Embryonic Brain:


This video presentation shows how the fetal brain grows during pregnancy, both in terms of its size and the number of neurons.

Type: Video/Audio/Animation

Mechanisms of Evolution:

This TED Ed video explains the mechanisms of evolutionary change: change in population size, sexual selection, mutation, gene flow, and natural selection.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Light is a Particle:

This video contains a demo that can be performed to show that light consists of particles
It also uses Lasers with different wavelengths

Type: Video/Audio/Animation

Science of the Olympic Winter Games - Aerial Physics:

A 4-minute video in which an Olympic freestyle skier and a physicist discuss the physics behind freestyle skiing.

Type: Video/Audio/Animation

Towers in the Tempest:

'Towers in the Tempest' is a 4.5 minute narrated animation that explains recent scientific insights into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower'. For the first time, research meteorologists have run complex simulations using a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers'. The science of 'hot towers' is described using: observed hurricane data from a satellite, descriptive illustrations, and volumetric visualizations of simulation data.

Type: Video/Audio/Animation

27 Storms: Arlene to Zeta:

This video from NASA presents the 2005 hurricane season with actual data that NASA and NOAA satellites measured. Sea surface temperatures, clouds, storm tracks, and hurricane category labels are shown as the hurricane season progresses.

Type: Video/Audio/Animation

How do Hurricanes Form - NASA Spaceplace:

This site describes how hurricanes (tropical cyclones) form. The site includes text, diagrams, and satellite images in a movie.

Type: Video/Audio/Animation

Solar Wind's Effect on Earth:

The Sun produces a solar wind — a continuous flow of charged particles — that can affect us on Earth. It can, for example, disrupt communications, navigation systems, and satellites. Solar activity can also cause power outages, such as the extensive Canadian blackout in 1989. In this video segment adapted from NASA, learn about solar storms and their effects on Earth.

Type: Video/Audio/Animation

Evolving Ideas: Isn't evolution just a theory?:

This video examines the vocabulary essential for understanding the nature of science and evolution and illustrates how evolution is a powerful, well-supported scientific explanation for the relatedness of all life. A clear definition and description of scientific theory is given.

Type: Video/Audio/Animation

Cancer:

An introduction to what cancer is and how it is the by-product of broken DNA replication.

Type: Video/Audio/Animation

Mount St. Helens: Rising From the Ashes :

In this NSF video and reading selection evolutionary biologist and ecologist John Bishop documents the return of living things to Mount St. Helens after the largest landslide in recorded history. This is a rare opportunity for scientists to get to study a devastated area and how it comes back from scratch in such detail.

Type: Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Pocket Mouse Evolution:

This simulation shows the spread of a favorable mutation through a population of pocket mice. Even a small selective advantage can lead to a rapid evolution of the population.

Type: Video/Audio/Animation

Introducing Green Chemistry: The Science of Solutions:

This lesson introduces students to Green Chemistry, the design of chemical products and processes that reduce or eliminate the use and/or the generation of hazardous substances. Green chemistry is a proactive approach to pollution prevention that teaches chemists how to develop products and materials in a manner that does not use hazardous substances, thus avoiding much waste, hazards and associated costs. The goal of this lesson is to introduce students to the 12 Principles of Green Chemistry and how they relate to a chemical process. These principles provide a framework for scientists, engineers and chemistry students to use when designing new materials, products, processes, and systems. The Principles focus on sustainable design criteria and have proven to be the source of innovative solutions to a wide range of problems. Through this lesson, students will also use weight and measurement to understand the concept of a recipe as it is applied to a chemical process and think critically about that process and how it might be improved. Students will be asked to use a wasteful, inefficient procedure to make glue and be challenged to improve the procedure-during which they will unknowingly use the 12 Principles. Before starting this lesson, students should have been introduced to the periodic table and properties of matter. The estimated time for this lesson is 50-60 minutes. 

Type: Video/Audio/Animation

Variation Is Essential: How Does Variation Within a Population Affect the Survival of a Species?:

This is a lesson about phenotypical variation within populations and how these differences are essential for biological evolution. Students will use a model organism (in this case, kidney beans) to explore variation patterns and subsequently connect these differences to artificial & natural selection. The NGSS’ CrossCutting Concepts and Science & Engineering Practices are embedded throughout the lesson.

The main learning objectives are:

  • Using a model (kidney beans) to explore the natural variations within a population.
  • Measuring differences between individuals in a population (population of beans).
  • Describing how genetic/phenotypic variation is a key part of biological evolution because it is a prerequisite for natural selection.
  • Demonstrating in which ways genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.

The NGSS Performance Expectations covered are HS-LS4-2. & HS-LS4-4.

Type: Video/Audio/Animation

Virtual Manipulatives

Black body Spectrum:

In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.

Type: Virtual Manipulative

Collision lab:

Learn more about collisions with the use of a virtual air hockey table. Investigate simple and complex collisions in one and two dimensions.Experiment with the number of discs, masses and initial conditions. Vary the elasticity and see how the total momentum and kinetic energy changes during collisions.

Some of the sample learning goals can be:

  • Draw "Before and After" pictures of collisions.
  • Construct momentum vector representations of "Before and After" collisions.
  • Apply law of conservation of momentum to solve problems with collisions.
  • Explain why energy is not conserved and varies in some collisions.
  • Determine the change in mechanical energy in collisions of varying "elasticity".
  • What does "elasticity" mean?

Type: Virtual Manipulative

Equilibrium Constant:


Chemical equilibrium is the condition which occurs when the concentration of reactants and products participating in a chemical reaction exhibit no net change over time. This simulation shows a model of an equilibrium system for a uni-molecular reaction. The value for the equilibrium constant, K, can be set in the simulation, to observe the reaction reaching the constant.

Type: Virtual Manipulative

Split Brain Experiments:

The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.

Type: Virtual Manipulative

Reversing Velocity of a charged particle with magnetic field:

This virtual manipulative will allow the user to see how a magnetic field will effect the motion of a charged particle. The charge of the particle and the size of the magnetic field can be changed.

Type: Virtual Manipulative

Photoelectric Effect:


This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:

  • Visualize and describe the photoelectric effect experiment.
  • Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
  • Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
  • Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.

Type: Virtual Manipulative

Geometric Optics:


This virtual manipulative will allow the students to understand how does a lens form an image. Students can see how light rays are refracted by a lens. Students can recognize that the image changes when they adjust the focal length of the lens, move the object, move the lens, or move the screen.
Some of the sample learning goals can be:

  • Explain how an image is formed by a converging lens using ray diagrams.
  • How changing the lens (radius, index, and diameter) effects where the image appears and ho it looks it terms of magnification, brightness and inversion.

Type: Virtual Manipulative

Charges and Fields:


This virtual manipulative will allow the students to understand that the electric field is the region where the force on one charge is caused by the presence of another charge. The students will recognize the equipotential lines that exist between the charged regions.
Some of the sample learning goals can be:

  • Determine the variables that affect how charged bodies interact.
  • Predict how charged bodies will interact.
  • Describe the strength and direction of the electric field around a charged body.

Type: Virtual Manipulative

Neon Lights and Other Discharge Lamps:

This virtual manipulative will allow you to produce light by bombarding atoms with electrons. You can also visualize how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Other areas to investigate:

  • Provide a basic design for a discharge lamp and explain the function of the different components.
  • Explain the basic structure of an atom and relate it to the color of light produced by discharge lamps.
  • Explain why discharge lamps emit only certain colors.
  • Design a discharge lamp to emit any desired spectrum of colors.

Type: Virtual Manipulative

Reversible Reactions:

This virtual manipulative will allow you to watch a reaction proceed over time. You can vary temperature, barrier height, and potential energies to note how total energy affects reaction rate. You will be able to record concentrations and time in order to extract rate coefficients.
Additionally you can:

  • Describe on a microscopic level, with illustrations, how reactions occur.
  • Describe how the motion of reactant molecules (speed and direction) contributes to a reaction happening.
  • Predict how changes in temperature, or use of a catalyst will affect the rate of a reaction.
  • On the potential energy curve, identify the activation energy for forward and reverse reactions and the energy change between reactants and products.
  • Form a graph of concentrations as a function of time, students should be able to identify when a system has reached equilibrium.
  • Calculate a rate coefficient from concentration and time data.
  • Determine how a rate coefficient changes with temperature.
  • Compare graphs of concentration versus time to determine which represents the fastest or slowest rate.

Type: Virtual Manipulative

Reactions Rates:

This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.

Areas to Explore:

  • Explain why and how a pinball shooter can be used to help understand ideas about reactions.
  • Describe on a microscopic level what contributes to a successful reaction.
  • Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
  • Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
  • Draw a potential energy diagram from the energies of reactants and products and activation energy.
  • Predict how raising or lowering the temperature will affect a system in the equilibrium.

Type: Virtual Manipulative

Generator:


This virtual manipulative will help the students generate electricity with a bar magnet. Students can discover the physics behind the phenomena by exploring magnets and how they can be used to make a bulb light. They will recognize that any change in the magnetic environment of a coil of wire will cause a voltage to be induced in the coil.
Some of the sample learning goals can be:

  • Identify equipment and conditions that produce induction.
  • Compare and contrast how both a light bulb and voltmeter can be used to show characteristics of the induced current.
  • Predict how the current will change when the conditions are varied.
  • Explain practical applications of Faraday's Law.
  • Explain what is the cause of the induction.

Type: Virtual Manipulative

Balloons and Buoyancy:

This simulation will provide an insight into the properties of gases. You can explore the more advanced features which enables you to explore three physical situations: Hot Air Balloon (rigid open container with its own heat source), Rigid Sphere (rigid closed container), and Helium Balloon (elastic closed container).

Through this activity you can:

  • Determine what causes the balloon, rigid sphere, and helium balloon to rise up or fall down in the box.
  • Predict how changing a variable among Pressure, Volume, Temperature and number influences the motion of the balloons.

Type: Virtual Manipulative

Beta Decay:

This is a virtual manipulative to understand beta decay. In the Beta decay process, a neutron decays into a proton and an electron (beta radiation). The process also requires the emission of a neutrino to maintain momentum and energy balance. Beta decay allows the atom to obtain the optimal ratio of protons and neutrons.

Type: Virtual Manipulative

Alpha decay:

This virtual manipulative will help you to understand the process of alpha decay. Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Type: Virtual Manipulative

Simplified MRI:

Whether it is a tumor or not, Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.

In this simulation you can:

  • Recognize that light can flip spins if the energy of the photons matches the difference between the energies of spin up and spin down.
  • Recognize that the difference between the energies of spin up and spin down is proportional to the strength of the applied magnetic field.
  • Describe how to put these two ideas together to detect where there is a higher density of spins.

Type: Virtual Manipulative

Molecules and Light:

This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.

Areas to explore:

  • How light interacts with molecules in our atmosphere.
  • Identify that absorption of light depends on the molecule and the type of light.
  • Relate the energy of the light to the resulting motion.
  • Identify that energy increases from microwave to ultraviolet.
  • Predict the motion of a molecule based on the type of light it absorbs.
  • Identify how the structure of a molecule affects how it interacts with light.

Type: Virtual Manipulative

Beer's Law Lab:

This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:

  • Describe the relationships between volume and amount of solute to solution concentration.
  • Explain qualitatively the relationship between solution color and concentration.
  • Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
  • Calculate the concentration of solutions in units of molarity (mol/L).
  • Design a procedure for creating a solution of a given concentration.
  • Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
  • Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
  • Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
  • Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?

Type: Virtual Manipulative

Pendulum Lab:


Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. Students can vary friction and the strength of gravity.

  • Design experiments to describe how variables affect the motion of a pendulum
  • Use a photogate timer to determine quantitatively how the period of a pendulum depends on the variables you described
  • Determine the gravitational acceleration of planet X
  • Explain the conservation of Mechanical energy concept using kinetic energy and gravitational potential energy
  • Describe energy chart from position or selected speeds

Type: Virtual Manipulative

Faraday's Law:

Light a bulb by waving a magnet. This demonstration of Faraday's law will help you to:
  • Explain what happens when the magnet moves through the coil at different speeds and how this affects the brightness of the bulb and the magnitude and sign of the voltage.
  • Explain the difference between moving the magnet through the coil from the right side versus the left side.
  • Explain the difference between moving magnet through the big coil versus the smaller coil.

Type: Virtual Manipulative

Sound:

The students will see and hear the effects of changing the frequency and/or amplitude of a sound wave. This animation may also be used to demonstrate the Doppler effect, reflection and interference of sound waves.

Type: Virtual Manipulative

Natural Selection:

Students will explore natural selection by controlling the environment and causing mutations in bunnies. This will demonstrate how natural selection works in nature. They will have the opportunity to throw in different variables to see what will make their species of rabbit survive.

Type: Virtual Manipulative

Nuclear Fission:

Complete this virtual manipulative to gain a better understanding of nuclear fission. Study the basic principles behind chain reactions and a nuclear reactor.

Type: Virtual Manipulative

Balloons and Static Electricity:

The students will rub a balloon on a sweater and see how charges are exchanged between the two objects. With these changes they will see their interactions.

Type: Virtual Manipulative

Web Mapping Portal:

A web mapping portal with real-time observations. This National Oceanic and Atmospheric Administration site allows teachers and students to use tools to generate maps, establish relationships between maps and databases, and learn the utility of Geographic Information Systems (GIS).

Type: Virtual Manipulative

Potential/Kinetic Energy Simulation:

Learn about conservation of energy with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy, thermal energy as he moves. You can adjust the amount of friction and mass. Measurement and graphing tools are built in.

Type: Virtual Manipulative

PhET Gas Properties:

This virtual manipulative allows you to investigate various aspects of gases through virtual experimentation. From the site: Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and more (open the box, change the molecular weight of the molecule). Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.