## Course Standards

## General Course Information and Notes

### General Notes

**Access Courses:** Access courses are intended only for students with a significant cognitive disability. Access courses are designed to provide students with access to the general curriculum. Access points reflect increasing levels of complexity and depth of knowledge aligned with grade-level expectations. The access points included in access courses are intentionally designed to foster high expectations for students with significant cognitive disabilities.

Access points in the subject areas of science, social studies, art, dance, physical education, theatre, and health provide tiered access to the general curriculum through three levels of access points (Participatory, Supported, and Independent). Access points in English language arts and mathematics do not contain these tiers, but contain Essential Understandings (or EUs). EUs consist of skills at varying levels of complexity and are a resource when planning for instruction.

**English Language Development ELD Standards Special Notes Section:**

Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Mathematics. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/ma.pdf.

**Additional Instructional Resources:**

A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.

### General Information

**Course Number:**7912090

**Course Path:**

**Abbreviated Title:**ACCESS ALGEBRA 1B

**Number of Credits:**Course may be taken for up to two credits

**Course Length:**Multiple (M) - Course length can vary

**Course Attributes:**

- Class Size Core Required

**Course Type:**Core Academic Course

**Course Status:**Course Approved

**Grade Level(s):**9,10,11,12,30,31

**Graduation Requirement:**Algebra 1

## Educator Certifications

## Student Resources

## Original Student Tutorials

Learn how to factor quadratic polynomials when the leading coefficient (*a*) is not 1 by using the box method in this interactive tutorial.

Type: Original Student Tutorial

Learn how to play The Diamond Game and master factoring quadratics when a = 1 in this interactive tutorial.

Type: Original Student Tutorial

Learn the process of completing the square of a quadratic function to find the maximum or minimum to discover how high a dolphin jumped in this interactive tutorial.

This is part 2 of a 2 part series. Click to open part 1.

Type: Original Student Tutorial

Learn the process of completing the square of a quadratic function to find the maximum or minimum to discover how high a dolphin jumped in this interactive tutorial.

This is part 1 of a 2 part series. Click ** **to open Part 2.

Type: Original Student Tutorial

Learn to identify and interpret parts of linear expressions in terms of mathematical or real-world contexts in this original tutorial.

Type: Original Student Tutorial

Follow Jake along as he relates box plots with other plots and identifies possible outliers in real-world data from surveys of moviegoers' ages in part 2 in this interactive tutorial.

This is part 2 of 2-part series, click HERE to view part 1.

Type: Original Student Tutorial

Follow Jake as he displays real-world data by creating box plots showing the 5 number summary and compares the spread of the data from surveys of the ages of moviegoers in part 1 of this interactive tutorial.

This is part 1 of 2-part series, click to view part 2.

Type: Original Student Tutorial

Learn about exponential decay as you calculate the value of used cars by examining equations, graphs, and tables in this interactive tutorial.

Type: Original Student Tutorial

Learn how to interpret key features of linear functions and translate between representations of linear functions through exploring jobs for teenagers in this interactive tutorial.

Type: Original Student Tutorial

Learn about exponential growth in the context of interest earned as money is put in a savings account by examining equations, graphs, and tables in this interactive tutorial.

Type: Original Student Tutorial

Learn about exponential functions and how they are different from linear functions by examining real world situations, their graphs and their tables in this interactive tutorial.

Type: Original Student Tutorial

Learn how to solve rational functions by getting common denominators in this interactive tutorial.

Type: Original Student Tutorial

Visualize the effect of using a value of k in both *kf*(*x*) or *f*(*kx*) when k is greater than zero in this interactive tutorial.

Type: Original Student Tutorial

Learn how to solve rational linear and quadratic equations using cross multiplication in this interactive tutorial.

Type: Original Student Tutorial

Learn how to solve and graph compound inequalities and determine if solutions are viable in part 2 of this interactive tutorial series.

Click to open Part 1.

Type: Original Student Tutorial

Learn how to write equations in two variables in this interactive tutorial.

Type: Original Student Tutorial

Learn how to solve and graph one variable inequalities, including compound inequalities, in part 1 of this interactive tutorial series.

Click to open Part 2.

Type: Original Student Tutorial

Learn how reflections of a function are created and tied to the value of *k* in the mapping of *f*(*x*) to -1*f*(*x*) in this interactive tutorial.

Type: Original Student Tutorial

Explore translations of functions on a graph that are caused by *k* in this interactive tutorial. GeoGebra and interactive practice items are used to investigate linear, quadratic, and exponential functions and their graphs, and the effect of a translation on a table of values.

Type: Original Student Tutorial

Practice identifying faulty reasoning in this two-part, interactive, English Language Arts tutorial. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.

Make sure to complete Part One before Part Two!

Type: Original Student Tutorial

Learn to identify faulty reasoning in this two-part interactive English Language Arts tutorial. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.

Make sure to complete both parts of this series! Click to open Part Two.

Type: Original Student Tutorial

Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence.

In Part Four, you'll use what you've learned throughout this series to evaluate Kennedy's overall argument.

Make sure to complete the previous parts of this series before beginning Part 4.

Type: Original Student Tutorial

Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence. By the end of this four-part series, you should be able to evaluate his overall argument.

In Part Three, you will read more of Kennedy's speech and identify a smaller claim in this section of his speech. You will also evaluate this smaller claim's relevancy to the main claim and evaluate Kennedy's reasons and evidence.

Make sure to complete all four parts of this series!

Type: Original Student Tutorial

Learn what slope is in mathematics and how to calculate it on a graph and with the slope formula in this interactive tutorial.

Type: Original Student Tutorial

Learn to find the zeros of a quadratic function and interpret their meaning in real-world contexts with this interactive tutorial.

Type: Original Student Tutorial

Learn how to add and subtract polynomials in this online tutorial. You will learn how to combine like terms and then use the distribute property to subtract polynomials.

This is part 2 of a two-part lesson. Click below to open part 1.

Type: Original Student Tutorial

Learn how to identify monomials and polynomials and determine their degree in this interactive tutorial.

This is part 1 in a two-part series. .

Type: Original Student Tutorial

Want to learn about Amelia Earhart, one of the most famous female aviators of all time? If so, then this interactive tutorial is for YOU! This tutorial is Part Two of a two-part series. In this series, you will study a speech by Amelia Earhart. You will practice identifying the purpose of her speech and practice identifying her use of rhetorical appeals (ethos, logos, pathos, Kairos). You will also evaluate the effectiveness of Earhart's rhetorical choices based on the purpose of her speech.

Please complete Part One before beginning Part Two. Click to view Part One.

Type: Original Student Tutorial

Want to learn about Amelia Earhart, one of the most famous female aviators of all time? If so, then this interactive tutorial is for YOU! This tutorial is Part One of a two-part series. In this series, you will study a speech by Amelia Earhart. You will practice identifying the purpose of her speech and practice identifying her use of rhetorical appeals (ethos, logos, pathos, Kairos). You will also evaluate the effectiveness of Earhart's rhetorical choices based on the purpose of her speech.

Please complete Part Two after completing this tutorial. Click to view Part Two.

Type: Original Student Tutorial

Learn to define, calculate, and interpret marginal frequencies, joint frequencies, and conditional frequencies in the context of the data with this interactive tutorial.

Type: Original Student Tutorial

Learn to complete the square of a quadratic expression and identify the maximum or minimum value of the quadratic function it defines. In this interactive tutorial, you'll also interpret the meaning of the maximum and minimum of a quadratic function in a real world context.

Type: Original Student Tutorial

Learn to rewrite products involving radicals and rational exponents using properties of exponents in this interactive tutorial.

Type: Original Student Tutorial

Compare and contrast mitosis and meiosis in this interactive tutorial. You'll also relate them to the processes of sexual and asexual reproduction and their consequences for genetic variation.

Type: Original Student Tutorial

Learn how to calculate and interpret an average rate of change over a specific interval on a graph.

Type: Original Student Tutorial

Follow as we discover key features of a quadratic equation written in vertex form in this interactive tutorial.

Type: Original Student Tutorial

Explore the relationship between mutations, the cell cycle, and uncontrolled cell growth which may result in cancer with this interactive tutorial.

Type: Original Student Tutorial

Write linear inequalities for different money situations in this interactive tutorial.

Type: Original Student Tutorial

Learn how to factor quadratic polynomials that follow special cases in this interactive tutorial.

Type: Original Student Tutorial

## Educational Games

In this timed activity, students solve linear equations (one- and two-step) or quadratic equations of varying difficulty depending on the initial conditions they select. This activity allows students to practice solving equations while the activity records their score, so they can track their progress. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Educational Game

In this activity, two students play a simulated game of Connect Four, but in order to place a piece on the board, they must correctly solve an algebraic equation. This activity allows students to practice solving equations of varying difficulty: one-step, two-step, or quadratic equations and using the distributive property if desired. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Educational Game

## Educational Software / Tool

This Excel spreadsheet allows the educator to input data into a two way frequency table and have the resulting relative frequency charts calculated automatically on the second sheet. This resource will assist the educator in checking student calculations on student-generated data quickly and easily.

Steps to add data: All data is input on the first spreadsheet; all tables are calculated on the second spreadsheet

- Modify column and row headings to match your data.
- Input joint frequency data.
- Click the second tab at the bottom of the window to see the automatic calculations.

Type: Educational Software / Tool

## Lesson Plan

This lesson introduces the students to the concepts of correlation and causation, and the difference between the two. The main learning objective is to encourage students to think critically about various possible explanations for a correlation, and to evaluate their plausibility, rather than passively taking presented information on faith. To give students the right tools for such analysis, the lesson covers most common reasons behind a correlation, and different possible types of causation.

Type: Lesson Plan

## Perspectives Video: Experts

Jump to it and learn more about how quadratic equations are used in robot navigation problem solving!

Type: Perspectives Video: Expert

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

## Perspectives Video: Professional/Enthusiasts

Listen in as a computing enthusiast describes how hexadecimal notation is used to express big numbers in just a little space.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Get fired up as you learn more about ceramic glaze recipes and mathematical units.

Type: Perspectives Video: Professional/Enthusiast

Watching this video will cause your critical thinking skills to improve. You might also have a great day, but that's just correlation.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

## Problem-Solving Tasks

Students explore the structure of the operation *s*/(v*n*). This question provides students with an opportunity to see expressions as constructed out of a sequence of operations: first taking the square root of *n*, then dividing the result of that operation into *s*.

Type: Problem-Solving Task

The purpose of this task is to allow students to demonstrate an ability to construct boxplots and to use boxplots as the basis for comparing distributions.

Type: Problem-Solving Task

This problem solving task asks students to make deductions about what kind of music students like by examining a table with data.

Type: Problem-Solving Task

This problem solving task challenges students to answer probability questions about SAT scores, using distribution and mean to solve the problem.

Type: Problem-Solving Task

This problem could be used as an introductory lesson to introduce group comparisons and to engage students in a question they may find amusing and interesting.

Type: Problem-Solving Task

This is a simple task addressing the distinction between correlation and causation. Students are given information indicating a correlation between two variables, and are asked to reason out whether or not a causation can be inferred.

Type: Problem-Solving Task

The purpose of this task is to assess ability to interpret the slope and intercept of the least squares regression line in context.

Type: Problem-Solving Task

This problem solving task asks students to examine the relationship between shops and crimes by using a correlation coefficient.

Type: Problem-Solving Task

The purpose of this task is to have students complete normal distribution calculations and to use properties of normal distributions to draw conclusions.

Type: Problem-Solving Task

This task requires students to use the normal distribution as a model for a data distribution. Students must use given means and standard deviations to approximate population percentages.

Type: Problem-Solving Task

The task provides a context to calculate discrete probabilities and represent them on a bar graph.

Type: Problem-Solving Task

In this example, students are asked to write a function describing the population growth of algae. It is implied that this is exponential growth.

Type: Problem-Solving Task

In this task, students use trigonometric functions to model the movement of a point around a wheel and, through space. Students also interpret features of graphs in terms of the given real-world context.

Type: Problem-Solving Task

This problem solving task challenges students to find the linear, exponential and quadratic functions based on two points.

Type: Problem-Solving Task

This problem solving task asks students to predict and model US population based on a chart of US population data from 1982 to 1988.

Type: Problem-Solving Task

This problem solving task asks students to solve five exponential and linear function problems based on a US population chart for the years 1790-1860.

Type: Problem-Solving Task

The purpose of this task is to give students an opportunity to explore various aspects of exponential models (e.g., distinguishing between constant absolute growth and constant relative growth, solving equations using logarithms, applying compound interest formulas) in the context of a real world problem with ties to developing financial literacy skills. In particular, students are introduced to the idea of inflation of prices of a single commodity, and are given a very brief introduction to the notion of the Consumer Price Index for measuring inflation of a body of goods.

Type: Problem-Solving Task

This task gives a variation of real-life contexts which could be modeled by a linear or exponential function. The key distinguishing feature between the two is whether the change by equal factors over equal intervals (exponential functions), or by a constant increase per unit interval (linear functions). The task could either be used as an assessment problem on this distinction, or used as an introduction to the differences between these very important classes of functions.

Type: Problem-Solving Task

This task requires students to use the fact that on the graph of the linear function h(x) = ax + b, the y-coordinate increases by a when x increases by one. Specific values for a and b were left out intentionally to encourage students to use the above fact as opposed to computing the point of intersection, (p,q), and then computing respective function values to answer the question.

Type: Problem-Solving Task

This task gives students an opportunity to work with exponential functions in a real world context involving continuously compounded interest. They will study how the base of the exponential function impacts its growth rate and use logarithms to solve exponential equations.

Type: Problem-Solving Task

This exploratory task requires the student to use properties of exponential functions in order to estimate how much Carbon 14 remains in a preserved plant after different amounts of time.

Type: Problem-Solving Task

This task involves a fairly straightforward decaying exponential. Filling out the table and developing the general formula is complicated only by the need to work with a fraction that requires decisions about rounding and precision.

Type: Problem-Solving Task

In this task students use verbal descriptions to construct and compare linear and exponential functions and to find where the two functions intersect (F-LE.2, F-LE.3, A-REI.11).

Type: Problem-Solving Task

This task provides an exploration of a quadratic equation by descriptive, numerical, graphical, and algebraic techniques. Based on its real-world applicability, teachers could use the task as a way to introduce and motivate algebraic techniques like completing the square, en route to a derivation of the quadratic formula.

Type: Problem-Solving Task

The given solutions for this task involve the creation and solving of a system of two equations and two unknowns, with the caveat that the context of the problem implies that we are interested only in non-negative integer solutions. Indeed, in the first solution, we must also restrict our attention to the case that one of the variables is further even. This aspect of the task is illustrative of mathematical practice standard MP4 (Model with mathematics), and crucial as the system has an integer solution for both situations, that is, whether or not we include the dollar on the floor in the cash box or not.

Type: Problem-Solving Task

Solving this problem with algebra requires factoring a particular cubic equation (the difference of two cubes) as well as a quadratic equation. An alternative solution using prime numbers and arithmetic is presented.

Type: Problem-Solving Task

This classroom task is meant to elicit a variety of different methods of solving a quadratic equation (A-REI.4). Some are straightforward (for example, expanding the square on the right and rearranging the equation so that we can use the quadratic formula); some are simple but clever (reasoning from the fact that x and (2x - 9) have the same square); some use tools (using a graphing calculator to graph the functions f(x) = x^2 and g(x) = (2x-90)^2 and looking for values of x at which the two functions intersect). Some solution methods will work on an arbitrary quadratic equation, while others (such as the last three) may have difficulty or fail if the quadratic equation is not given in a particular form, or if the solutions are not rational numbers.

Type: Problem-Solving Task

The purpose of this task it to have students discover how (and how quickly) an exponentially increasing quantity eventually surpasses a linearly increasing quantity. Students' intuitions will probably have them favoring Option A for much longer than is actually the case, especially if they are new to the phenomenon of exponential growth. Teachers might use this surprise as leverage to segue into a more involved task comparing linear and exponential growth.

Type: Problem-Solving Task

This task requires students to use the fact that the value of an exponential function f(x) = a · b^x increases by a multiplicative factor of b when x increases by one. It intentionally omits specific values for c and d in order to encourage students to use this fact instead of computing the point of intersection, (p,q), and then computing function values to answer the question.

Type: Problem-Solving Task

This problem assumes that students are familiar with the notation x_{0} and ?x. However, the language "successive quotient" may be new.

Type: Problem-Solving Task

This task assumes that students are familiar with the ?x and ?y notations. Students most likely developed this familiarity in their work with slope.

Type: Problem-Solving Task

An important property of linear functions is that they grow by equal differences over equal intervals. In F.LE Equal Differences over Equal Intervals 1, students prove this for equal intervals of length one unit, and note that in this case the equal differences have the same value as the slope.

Type: Problem-Solving Task

This problem-solving task asks students to examine if linear modeling would be appropriate to describe and predict population growth from select years.

Type: Problem-Solving Task

This problem-solving task provides students an opportunity to experiment with modeling real data by using population growth rates from the past two centuries.

Type: Problem-Solving Task

This problem-solving task challenges students to write expressions and create a table to calculate how much money can be gained after investing at different banks with different interest rates.

Type: Problem-Solving Task

This problem-solving task asks students to describe exponential growth through a real-world problem involving the illegal introduction of fish into a lake.

Type: Problem-Solving Task

This problem-solving emphasizes the expectation that students know linear functions grow by constant differences over equal intervals and exponential functions grow by constant factors over equal intervals.

Type: Problem-Solving Task

This problem-solving task challenges students to find all quadratic functions described by given equation and coordinates, and describe how the graphs of those functions are related to one another.

Type: Problem-Solving Task

This problem solving task shows that an exponential function takes larger values than a cubic polynomial function provided the input is sufficiently large. This resource also includes standards alignment commentary and annotated solutions.

Type: Problem-Solving Task

This task asks students to calculate exponential functions with a base larger than one.

Type: Problem-Solving Task

The task addresses knowledge related to interpreting forms of functions derived by factoring or completing the square. It requires students to pay special attention to the information provided by the way the equation is represented as well as the sign of the leading coefficient, which is not written out explicitly, and then to connect this information to the important features of the graph.

Type: Problem-Solving Task

This task is meant to be a straight-forward assessment task of graph reading and interpreting skills. This task helps reinforce the idea that when a variable represents time, t = 0 is chosen as an arbitrary point in time and positive times are interpreted as times that happen after that.

Type: Problem-Solving Task

This task could be used for assessment or for practice. It allows students to compare characteristics of two quadratic functions that are each represented differently, one as the graph of a quadratic function and one written out algebraically. Specifically, students are asked to determine which function has the greatest maximum and the greatest non-negative root.

Type: Problem-Solving Task

This task asks students to find the average, write an equation, find the domain, and create a graph of the cost of producing DVDs.

Type: Problem-Solving Task

The problem presents a context where a quadratic function arises. Careful analysis, including graphing of the function, is closely related to the context. The student will gain valuable experience applying the quadratic formula and the exercise also gives a possible implementation of completing the square.

Type: Problem-Solving Task

The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.

Type: Problem-Solving Task

This task asks students to consider functions in regard to temperatures in a high school gym.

Type: Problem-Solving Task

In this task students are given graphs of quantities related to weather. The purpose of the task is to show that graphs are more than a collection of coordinate points; they can tell a story about the variables that are involved, and together they can paint a very complete picture of a situation, in this case the weather. Features in one graph, like maximum and minimum points, correspond to features in another graph. For example, on a rainy day, the solar radiation is very low, and the cumulative rainfall graph is increasing with a large slope.

Type: Problem-Solving Task

This deceptively simple task asks students to find the domain and range of a function from a given context. The function is linear and if simply looked at from a formulaic point of view, students might find the formula for the line and say that the domain and range are all real numbers.

Type: Problem-Solving Task

This problem introduces a logistic growth model in the concrete settings of estimating the population of the U.S. The model gives a surprisingly accurate estimate and this should be contrasted with linear and exponential models.

Type: Problem-Solving Task

This task is for instructional purposes only and students should already be familiar with some specific examples of logistic growth functions. The goal of this task is to have students appreciate how different constants influence the shape of a graph.

Type: Problem-Solving Task

This task can be used as a quick assessment to see if students can make sense of a graph in the context of a real world situation. Students also have to pay attention to the scale on the vertical axis to find the correct match. The first and third graphs look very similar at first glance, but the function values are very different since the scales on the vertical axes are very different. The task could also be used to generate a group discussion on interpreting functions given by graphs.

Type: Problem-Solving Task

In this task, students will use inverse operations to solve the equations for the unknown variable or for the designated variable if there is more than one.

Type: Problem-Solving Task

This task presents a simple but mathematically interesting game whose solution is a challenging exercise in creating and reasoning with algebraic inequalities. The core of the task involves converting a verbal statement into a mathematical inequality in a context in which the inequality is not obviously presented, and then repeatedly using the inequality to deduce information about the structure of the game.

Type: Problem-Solving Task

This task examines the ways in which the plane can be covered by regular polygons in a very strict arrangement called a regular tessellation. These tessellations are studied here using algebra, which enters the picture via the formula for the measure of the interior angles of a regular polygon (which should therefore be introduced or reviewed before beginning the task). The goal of the task is to use algebra in order to understand which tessellations of the plane with regular polygons are possible.

Type: Problem-Solving Task

This task provides an approximation, and definition, of *e*, in the context of more and more frequent compounding of interest in a bank account. The approach is computational.

Type: Problem-Solving Task

This task aims for students to understand the quadratic formula in a geometric way in terms of the graph of a quadratic function.

Type: Problem-Solving Task

This task is intended for instruction and to motivate "Building a general quadratic function." This task assumes that the students are familiar with the process of completing the square.

Type: Problem-Solving Task

In this example, students use properties of rational exponents and other algebraic concepts to compare and verify the relative size of two real numbers that involve decimal exponents.

Type: Problem-Solving Task

In this example, students are given the graph of two functions and are asked to sketch the graph of the function that is their sum. The intent is that students develop a conceptual understanding of function addition.

Type: Problem-Solving Task

The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.

Type: Problem-Solving Task

This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.

Type: Problem-Solving Task

There are many different ways to write exponential expressions that describe the same quantity, in this task the amount of a radioactive substance after *t* years. Depending on what aspect of the context we need to investigate, one expression of the quantity may be more useful than another. This task contrasts the usefulness of four equivalent expressions. Students first have to confirm that the given expressions for the radioactive substance are equivalent. Then they have to explain the significance of each expression in the context of the situation.

Type: Problem-Solving Task

Students are asked to use units to determine if the given statement is valid.

Type: Problem-Solving Task

This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.

Type: Problem-Solving Task

This task is intended for instructional purposes so that students can become familiar and confident with using a calculator and understanding what it can and cannot do. This task gives an opportunity to work on the notion of place value (in parts [b] and [c]) and also to understand part of an argument for why the square root of 2 is not a rational number.

Type: Problem-Solving Task

Students manipulate a given equation to find specified information.

Type: Problem-Solving Task

Students solve problems tracking the balance of a checking account used only to pay rent. This simple conceptual task focuses on what it means for a number to be a solution to an equation, rather than on the process of solving equations.

Type: Problem-Solving Task

Students extrapolate the list price of a car given a total amount paid in states with different tax rates. The emphasis in this task is not on complex solution procedures. Rather, the progression of equations, from two that involve different values of the sales tax, to one that involves the sales tax as a parameter, is designed to foster the habit of looking for regularity in solution procedures, so that students don't approach every equation as a new problem but learn to notice familiar types.

Type: Problem-Solving Task

This task addresses an important issue about inverse functions. In this case the function *f* is the inverse of the function *g* but *g* is not the inverse of *f* unless the domain of *f* is restricted.

Type: Problem-Solving Task

In this resource, students refer to given information which defines 5 variables in the context of real world government expenses. They are then asked to write equations based upon specific known values for some of the variables. The emphasis is on setting up, rather than solving, the equations.

Type: Problem-Solving Task

This task asks students to write expressions for various problems involving distance per units of volume.

Type: Problem-Solving Task

The context of this example is the spread of a flu virus on campus and the related sale of tissue boxes sold. Students interpret the composite function and determine values simply by using the tables of values.

Type: Problem-Solving Task

In this resource, a method of deriving the quadratic formula from a theoretical standpoint is demonstrated. This task is for instructional purposes only and builds on "Building an explicit quadratic function."

Type: Problem-Solving Task

This task develops reasoning behind the general formula for balances under continuously compounded interest. While this task itself specifically address the standard (F-BF), building functions from a context, an auxiliary purpose is to introduce and motivate the number *e*, which plays a significant role in the (F-LE) domain of tasks.

Type: Problem-Solving Task

This task compares the usefulness of different forms of a quadratic expression. Students have to choose which form most easily provides information about the maximum value, the zeros and the vertical intercept of a quadratic expression in the context of a real world situation. Rather than just manipulating one form into the other, students can make sense out of the structure of the expressions.

(From *Algebra: Form and Function*, McCallum et al., Wiley 2010)

Type: Problem-Solving Task

The purpose of this task is to help students see manipulation of expressions as an activity undertaken for a purpose.

Variation 1 of this task presents a related more complex expression already in the correct form to answer the question.

The expression arises in physics as the reciprocal of the combined resistance of two resistors in parallel. However, the context is not explicitly considered here.

Type: Problem-Solving Task

This task would be especially well-suited for instructional purposes. Students will benefit from a class discussion about the slope, y-intercept, x-intercept, and implications of the restricted domain for interpreting more precisely what the equation is modeling.

Type: Problem-Solving Task

This task illustrates the process of rearranging the terms of an expression to reveal different aspects about the quantity it represents, precisely the language being used in standard MAFS.912.A-SSE.2.3. Students are provided with an expression giving the temperature of a container at a time *t*, and have to use simple inequalities (e.g., that 2^{t}>0 for all *t*) to reduce the complexity of an expression to a form where bounds on the temperature of a container of ice cream are made apparent.

Type: Problem-Solving Task

Students explore and manipulate expressions based on the following statement:

A function f defined for -a < x="">< a="" is="" even="" if="" f(-x)="f(x)" and="" is="" odd="" if="" f(-x)="-f(x)" when="" -a="">< x="">< a.="" in="" this="" task="" we="" assume="" f="" is="" defined="" on="" such="" an="" interval,="" which="" might="" be="" the="" full="" real="" line="" (i.e.,="" a="">

Type: Problem-Solving Task

Students compare graphs of different quadratic functions, then produce equations of their own to satisfy given conditions.

This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is. It is effective after students have graphed parabolas in vertex form (y=a(x–h)^{2}+k), but have not yet explored graphing other forms.

Type: Problem-Solving Task

This is a standard problem phrased in a non-standard way. Rather than asking students to perform an operation, expanding, it expects them to choose the operation for themselves in response to a question about structure. Students must understand the need to transform the factored form of the quadratic expression (a product of sums) into a sum of products in order to easily see *a*, the coefficient of the x^{2} term; *k*, the leading coefficient of the *x* term; and *n*, the constant term.

Type: Problem-Solving Task

Students are asked to interpret the effect on the value of an expression given a change in value of one of the variables.

Type: Problem-Solving Task

Students examine and answer questions related to a scenario similar to a "mixture" problem involving two different mixtures of fertilizer. In this example, students determine and then compare expressions that correspond to concentrations of various mixtures. Ultimately, students generalize the problem and verify conclusions using algebraic rather than numerical expressions.

Type: Problem-Solving Task

Students are asked to interpret expressions and equations within the context of the amounts of caramels and truffles in a box of candy.

Type: Problem-Solving Task

This problem asks students to consider algebraic expressions calculating the number of floor tiles in given patterns. The purpose of this task is to give students practice in reading, analyzing, and constructing algebraic expressions, attending to the relationship between the form of an expression and the context from which it arises. The context here is intentionally thin; the point is not to provide a practical application to kitchen floors, but to give a framework that imbues the expressions with an external meaning.

Type: Problem-Solving Task

This resource describes a simple scenario which can be represented by the use of variables. Students are asked to examine several variable expressions, interpret their meaning, and describe what quantities they each represent in the given context.

Type: Problem-Solving Task

This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"

This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).

Type: Problem-Solving Task

In this task students interpret the relative size of variable expressions involving two variables in the context of a real world situation. All given expressions can be interpreted as quantities that one might study when looking at two animal populations.

Type: Problem-Solving Task

This resource involves simplifying algebraic expressions that involve complex numbers and various algebraic operations.

Type: Problem-Solving Task

This task has students experiment with the operations of addition and multiplication, as they relate to the notions of rationality and irrationality.

Type: Problem-Solving Task

The purpose of this task is to identify the structure in the two algebraic expressions by interpreting them in terms of a geometric context. Students will have likely seen this type of process before, so the principal source of challenge in this task is to encourage a multitude and variety of approaches, both in terms of the geometric argument and in terms of the algebraic manipulation.

Type: Problem-Solving Task

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Type: Problem-Solving Task

This task requires students to recognize the graphs of different (positive) powers of x.

Type: Problem-Solving Task

This problem solving task examines, in a graphical setting, the impact of adding a scalar, multiplying by a scalar, and making a linear substitution of variables on the graph of the function *f*. This resource also includes standards alignment commentary and annotated solutions.

Type: Problem-Solving Task

Unit conversion problems provide a rich source of examples both for composition of functions (when several successive conversions are required) and inverses (units can always be converted in either of two directions).

Type: Problem-Solving Task

This task asks students to determine a recursive process from a context. Students who study computer programming will make regular use of recursive processes.

Type: Problem-Solving Task

This task asks students to use proportions of mass and volume to create ideal brine for saltwater fish tanks. It also asks students to compare graphs.

Type: Problem-Solving Task

This problem is a quadratic function example. The other tasks in this set illustrate MAFS.912.F.BF.1.1.a in the context of linear, exponential, and rational functions.

Type: Problem-Solving Task

The task addresses the first part of standard MAFS.912.F-BF.2.3: "Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative)."

Type: Problem-Solving Task

The purpose of this task is to introduce students to exponential growth. While the context presents a classic example of exponential growth, it approaches it from a non-standard point of view.

Type: Problem-Solving Task

In the middle grades, students have lots of experience analyzing and comparing linear functions using graphs, table, symbolic expressions, and verbal descriptions. In this task, students may choose a representation that suits them and then reason from within that representation.

Type: Problem-Solving Task

The primary purpose of this task is to lead students to a numerical and graphical understanding of the behavior of a rational function near a vertical asymptote, in terms of the expression defining the function.

Type: Problem-Solving Task

The purpose of this task is to give students practice constructing functions that represent a quantity of interest in a context, and then interpreting features of the function in the light of the context. It can be used as either an assessment or a teaching task.

Type: Problem-Solving Task

This task asks students to determine whether a the set of given functions is odd, even, or neither.

Type: Problem-Solving Task

## Student Center Activity

This video will demonstrate how to multiply polynomials.

Type: Student Center Activity

## Tutorials

You will learn in this video how to solve Quadratic Equations using the Quadratic Formula.

Type: Tutorial

You will learn how the parent function for a quadratic function is affected when f(x) = x^{2}.

Type: Tutorial

You will learn int his video how to solve the Quadratic Equation by Completing the Square.

Type: Tutorial

This video tutorial shows students: the standard form of a polynomial, how to identify polynomials, how to determine the degree of a polynomial, how to add and subtract polynomials, and how to represent the area of a shape as an addition or subtraction of polynomials.

Type: Tutorial

In this video tutorial students will learn how to solve quadratic equations by square roots.

Type: Tutorial

This video demonstrates solving a word problem by creating a system of linear equations that represents the situation and solving them using elimination.

Type: Tutorial

This video explains how to subtract polynomials with multiple variables and reinforces how to distribute a negative number.

Type: Tutorial

This video covers squaring a binomial with two variables. Students will be given the area of a square.

Type: Tutorial

This video provides a real-world scenario and step-by-step instructions to constructing equations using two variables. Possible follow-up videos include *Plotting System of Equations - Yoga Plan, Solving System of Equations with Substitution - Yoga Plan, and Solving System of Equations with Elimination - Yoga Plan.*

Type: Tutorial

This tutorial will help the students to identify the vertex of a parabola from the equation, and then graph the parabola.

Type: Tutorial

This tutorial helps the learners to graph the equation of a quadratic function using the coordinates of the vertex of a parabola and its x- intercepts.

Type: Tutorial

Evaluating Expressions with Two Variables

Type: Tutorial

This tutorial will help you to learn about exponential functions by graphing various equations representing exponential growth and decay.

Type: Tutorial

Learn how to evaluate an expression with variables using a technique called substitution (or "plugging in").

Type: Tutorial

Our focus here is understanding that a variable is just a letter or symbol (usually a lower case letter) that can represent different values in an expression. We got this. Just watch.

Type: Tutorial

This tutorial demonstrates how to use the power of a power property with both numerals and variables.

Type: Tutorial

This lecture shows how algebra is used to solve problems involving mixtures of solutions of different concentrations.

Type: Tutorial

The video tutorial discusses about two typical polynomial multiplications. First, squaring a binomial and second, product of a sum and difference.

Type: Tutorial

This tutorial will help the learners practice division of polynomials. Students will recognize that dividing polynomials is similar to simplifying fractions.

Type: Tutorial

This tutorial will help the learners practice multiplication of polynomials. Learners will understand that when they multiply expressions with more than two terms, they need to make sure each term in the first expression multiplies every term in the second expression.

Type: Tutorial

Binomials are the polynomials with two terms. This tutorial will help the students learn about the multiplication of binomials. In multiplication, we need to make sure that each term in the first set of parenthesis multiplies each term in the second set.

Type: Tutorial

## Video/Audio/Animations

This video will demonstrate how to solve a quadratic equation using square roots.

Type: Video/Audio/Animation

This video demonstrates how to determine if a relation is a function and how to identify the domain.

Type: Video/Audio/Animation

Exponents are not only integers and unit fractions. An exponent can be any rational number expressed as the quotient of two integers.

Type: Video/Audio/Animation

Radical expressions can often be simplified by moving factors which are perfect roots out from under the radical sign.

Type: Video/Audio/Animation

Mixture problems can involve mixtures of things other than liquids. This video shows how Algebra can be used to solve problems involving mixtures of different types of items.

Type: Video/Audio/Animation

When should a system of equations with multiple variables be used to solve an Algebra problem, instead of using a single equation with a single variable?

Type: Video/Audio/Animation

The points of intersection of two graphs represent common solutions to both equations. Finding these intersection points is an important tool in analyzing physical and mathematical systems.

Type: Video/Audio/Animation

The point-slope form of the equation for a line can describe any non-vertical line in the Cartesian plane, given the slope and the coordinates of a single point which lies on the line.

Type: Video/Audio/Animation

The two point form of the equation for a line can describe any non-vertical line in the Cartesian plane, given the coordinates of two points which lie on the line.

Type: Video/Audio/Animation

Linear equations can be used to solve many types of real-word problems. In this episode, the water depth of a pool is shown to be a linear function of time and an equation is developed to model its behavior. Unfortunately, ace Algebra student A. V. Geekman ends up in hot water anyway.

Type: Video/Audio/Animation

Literal equations are formulas for calculating the value of one unknown quantity from one or more known quantities. Variables in the formula are replaced by the actual or 'literal' values corresponding to a specific instance of the relationship.

Type: Video/Audio/Animation

This video takes a look at rearranging a formula to highlight a quantity of interest.

Type: Video/Audio/Animation

This video demonstrates writing a function that represents a real-life scenario.

Type: Video/Audio/Animation

This video gives a more in-depth look at graphing quadratic functions than previously offered in Quadratic Functions 1.

Type: Video/Audio/Animation

Khan Academy video tutorial on graphing linear equations: "Algebra: Graphing Lines 1"

Type: Video/Audio/Animation

Khan Academy tutorial video that demonstrates with real-world data the use of Excel spreadsheet to fit a line to data and make predictions using that line.

Type: Video/Audio/Animation

This Khan Academy video tutorial introduces averages and algebra problems involving averages.

Type: Video/Audio/Animation

## Virtual Manipulatives

This resource will assess students' understanding of addition and subtraction of polynomials.

Type: Virtual Manipulative

This resource can be used to assess students' understanding of solving quadratic equation by taking the square root. A great resource to view prior to this is "Solving quadratic equations by square root' by Khan Academy.

Type: Virtual Manipulative

In this activity, students adjust slider bars which adjust the coefficients and constants of a linear function and examine how their changes affect the graph. The equation of the line can be in slope-intercept form or standard form. This activity allows students to explore linear equations, slopes, and y-intercepts and their visual representation on a graph. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

This resource provides linear functions in standard form and asks the user to graph it using intercepts on an interactive graph below the problem. Immediate feedback is provided, and for incorrect responses, each step of the solution is thoroughly modeled.

Type: Virtual Manipulative

Allows students access to a Cartesian Coordinate System where linear equations can be graphed and details of the line and the slope can be observed.

Type: Virtual Manipulative

In this activity, students use preset data or enter in their own data to be represented in a box plot. This activity allows students to explore single as well as side-by-side box plots of different data. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the Java applet.

Type: Virtual Manipulative

Using this virtual manipulative, students are able to graph a function and a set of ordered pairs on the same coordinate plane. The constants, coefficients, and exponents can be adjusted using slider bars, so the student can explore the affect on the graph as the function parameters are changed. Students can also examine the deviation of the data from the function. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

This is a graphing tool/activity for students to deepen their understanding of polynomial functions and their corresponding graphs. This tool is to be used in conjunction with a full lesson on graphing polynomial functions; it can be used either before an in depth lesson to prompt students to make inferences and connections between the coefficients in polynomial functions and their corresponding graphs, or as a practice tool after a lesson in graphing the polynomial functions.

Type: Virtual Manipulative

With this online tool, students adjust the standard deviation and sample size of a normal distribution to see how it will affect a histogram of that distribution. This activity allows students to explore the effect of changing the sample size in an experiment and the effect of changing the standard deviation of a normal distribution. Tabs at the top of the page provide access to supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

In this online tool, students input a function to create a graph where the constants, coefficients, and exponents can be adjusted by slider bars. This tool allows students to explore graphs of functions and how adjusting the numbers in the function affect the graph. Using tabs at the top of the page you can also access supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

This is an online graphing utility that can be used to create box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots.

Type: Virtual Manipulative

In this activity, students enter inputs into a function machine. Then, by examining the outputs, they must determine what function the machine is performing. This activity allows students to explore functions and what inputs are most useful for determining the function rule. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

With a mouse, students will drag data points (with their error bars) and watch the best-fit polynomial curve form instantly. Students can choose the type of fit: linear, quadratic, cubic, or quartic. Best fit or adjustable fit can be displayed.

Type: Virtual Manipulative

This interactive simulation investigates graphing linear and quadratic equations. Users are given the ability to define and change the coefficients and constants in order to observe resulting changes in the graph(s).

Type: Virtual Manipulative

This manipulative allows the user to enter multiple coordinates on a grid, estimate a line of best fit, and then determine the equation for a line of best fit.

Type: Virtual Manipulative

This virtual manipulative histogram tool can aid in analyzing the distribution of a dataset. It has 6 preset datasets and a function to add your own data for analysis.

Type: Virtual Manipulative

This activity allows the user to graph data sets in multiple bar graphs. The color, thickness, and scale of the graph are adjustable which may produce graphs that are misleading. Users may input their own data, or use or alter pre-made data sets. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

In this activity, students can create and view a histogram using existing data sets or original data entered. Students can adjust the interval size using a slider bar, and they can also adjust the other scales on the graph. This activity allows students to explore histograms as a way to represent data as well as the concepts of mean, standard deviation, and scale. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Section:Exceptional Student Education >Grade Group:Senior High and Adult >Subject:Academics - Subject Areas >