Course Standards
General Course Information and Notes
Version Description
Students experiment with the media and techniques used to create a variety of two-dimensional (2-D) artworks through the development of skills in figure drawing. Students practice, sketch, and manipulate the structural elements of art to improve mark making and/or the organizational principles of design in a composition from observation, research, and/or imagination. Through the critique process, students evaluate and respond to their own work and that of their peers. This course incorporates hands-on activities and consumption of art materials.General Notes
English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate for social and instructional purposes within the school setting. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/si.pdf
General Information
Educator Certifications
Student Resources
Original Student Tutorials
This is Part Two of a two-part series. Learn to identify faulty reasoning in this interactive tutorial series. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.
Make sure to complete Part One before Part Two! Click HERE to launch Part One.
Type: Original Student Tutorial
Learn to identify faulty reasoning in this two-part interactive English Language Arts tutorial. You'll learn what some experts say about year-round schools, what research has been conducted about their effectiveness, and how arguments can be made for and against year-round education. Then, you'll read a speech in favor of year-round schools and identify faulty reasoning within the argument, specifically the use of hasty generalizations.
Make sure to complete both parts of this series! Click HERE to open Part Two.
Type: Original Student Tutorial
Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence.
In Part Four, you'll use what you've learned throughout this series to evaluate Kennedy's overall argument.
Make sure to complete the previous parts of this series before beginning Part 4.
Type: Original Student Tutorial
Examine President John F. Kennedy's inaugural address in this interactive tutorial. You will examine Kennedy's argument, main claim, smaller claims, reasons, and evidence. By the end of this four-part series, you should be able to evaluate his overall argument.
In Part Three, you will read more of Kennedy's speech and identify a smaller claim in this section of his speech. You will also evaluate this smaller claim's relevancy to the main claim and evaluate Kennedy's reasons and evidence.
Make sure to complete all four parts of this series!
Type: Original Student Tutorial
This is Part Two of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals.
Be sure to complete Part One first. Click here to launch PART ONE.
Type: Original Student Tutorial
This is Part One of a two-part tutorial series. In this interactive tutorial, you'll practice identifying a speaker's purpose using a speech by aviation pioneer Amelia Earhart. You will examine her use of rhetorical appeals, including ethos, logos, pathos, and kairos. Finally, you'll evaluate the effectiveness of Earhart's use of rhetorical appeals.
Click here to launch PART TWO.
Type: Original Student Tutorial
Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.”
This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.
- Drones and Glaciers: Eyes in the Sky (Part 1)
- Drones and Glaciers: Eyes in the Sky (Part 2)
- Expository Writing: Eyes in the Sky (Part 3)
- Expository Writing: Eyes in the Sky (Part 4)
Type: Original Student Tutorial
Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research.
This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.
- Drones and Glaciers: Eyes in the Sky (Part 1)
- Drones and Glaciers: Eyes in the Sky (Part 2)
- Expository Writing: Eyes in the Sky (Part 3)
- Expository Writing: Eyes in the Sky (Part 4)
Type: Original Student Tutorial
Perspectives Video: Expert
Statistical analysis played an essential role in using microgravity sensors to determine location of caves in Wakulla County.
Download the CPALMS Perspectives video student note taking guide.
Type: Perspectives Video: Expert
Perspectives Video: Professional/Enthusiast
<p>See and see far into the future of arts and manufacturing as a technician explains computer numerically controlled (CNC) machining bit by bit.</p>
Type: Perspectives Video: Professional/Enthusiast
Problem-Solving Tasks
The purpose of this task is to engage students in geometric modeling, and in particular to deduce algebraic relationships between variables stemming from geometric constraints.
Type: Problem-Solving Task
Using a chart of diameters of different denominations of coins, students are asked to figure out how many coins fit around a central coin. (For this task, United States coins are used, but the task can be adapted for coins from other countries.)
Type: Problem-Solving Task
This problem asks students to model phenomena on the surface of the earth by examining the visibility of the lamp in a lighthouse from a boat.
Type: Problem-Solving Task
This problem solving task encourages students to explore why solar eclipses are rare by examining the radius of the sun and the furthest distance between the moon and the earth.
Type: Problem-Solving Task
The goal of this task is to model a familiar object, an Olympic track, using geometric shapes. Calculations of perimeters of these shapes explain the staggered start of runners in a 400 meter race.
Type: Problem-Solving Task
In this problem, geometry is applied to a 400 meter track to find the perimeter of the track.
Type: Problem-Solving Task
In this task, a typographic grid system serves as the background for a standard paper clip. A metric measurement scale is drawn across the bottom of the grid and the paper clip extends in both directions slightly beyond the grid. Students are given the approximate length of the paper clip and determine the number of like paper clips made from a given length of wire.
Type: Problem-Solving Task
In this task, students will provide a sketch of a paper ice cream cone wrapper, use the sketch to develop a formula for the surface area of the wrapper, and estimate the maximum number of wrappers that could be cut from a rectangular piece of paper.
Type: Problem-Solving Task
This problem solving task asks students to explain which measurements are needed to estimate the thickness of a soda can. Multiple solution processes are presented.
Type: Problem-Solving Task
This problem solving task challenges students to find the surface area of a soda can, calculate how many cubic centimeters of aluminum it contains, and estimate how thick it is.
Type: Problem-Solving Task
This is a mathematical modeling task aimed at making a reasonable estimate for something which is too large to count accurately, the number of leaves on a tree.
Type: Problem-Solving Task
This is a mathematical modeling task aimed at making a reasonable estimate for something which is too large to count accurately, the number of leaves on a tree.
Type: Problem-Solving Task
This problem solving task challenges students to apply the concepts of mass, volume, and density in the real-world context to find how many cells are in the human body.
Type: Problem-Solving Task
The goal of this task is to use geometry to study the structure of beehives.
Type: Problem-Solving Task
Reflective of the modernness of the technology involved, this is a challenging geometric modeling task in which students discover from scratch the geometric principles underlying the software used by GPS systems.
Type: Problem-Solving Task
This problem solving task gives an interesting context for implementing ideas from geometry and trigonometry.
Type: Problem-Solving Task
This problem solving task uses the tale of Archimedes and the King of Syracuse's crown to determine the volume and mass of gold and silver.
Type: Problem-Solving Task
This task presents a context that leads students toward discovery of the formula for calculating the volume of a sphere.
Type: Problem-Solving Task
This task is inspired by the derivation of the volume formula for the sphere. If a sphere of radius 1 is enclosed in a cylinder of radius 1 and height 2, then the volume not occupied by the sphere is equal to the volume of a "double-naped cone" with vertex at the center of the sphere and bases equal to the bases of the cylinder
Type: Problem-Solving Task
This task examines the ways in which the plane can be covered by regular polygons in a very strict arrangement called a regular tessellation. These tessellations are studied here using algebra, which enters the picture via the formula for the measure of the interior angles of a regular polygon (which should therefore be introduced or reviewed before beginning the task). The goal of the task is to use algebra in order to understand which tessellations of the plane with regular polygons are possible.
Type: Problem-Solving Task