Course Standards
Use grade appropriate Nature of Science benchmarks (i.e. if this course is offered to seventh grade students, then the SC.7.N benchmarks should be integrated into the course content, and SC.6.N and SC.8.N benchmarks should be omitted from the seventh grade course).
Name | Description | |
SC.6.E.6.1: | Describe and give examples of ways in which Earth's surface is built up and torn down by physical and chemical weathering, erosion, and deposition. | |
SC.6.E.6.2: | Recognize that there are a variety of different landforms on Earth's surface such as coastlines, dunes, rivers, mountains, glaciers, deltas, and lakes and relate these landforms as they apply to Florida. | |
SC.6.E.7.1: | Differentiate among radiation, conduction, and convection, the three mechanisms by which heat is transferred through Earth's system. | |
SC.6.E.7.2: | Investigate and apply how the cycling of water between the atmosphere and hydrosphere has an effect on weather patterns and climate. | |
SC.6.E.7.3: | Describe how global patterns such as the jet stream and ocean currents influence local weather in measurable terms such as temperature, air pressure, wind direction and speed, and humidity and precipitation. | |
SC.6.E.7.4: | Differentiate and show interactions among the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere. | |
SC.6.E.7.5: | Explain how energy provided by the sun influences global patterns of atmospheric movement and the temperature differences between air, water, and land. | |
SC.6.E.7.6: | Differentiate between weather and climate. | |
SC.6.E.7.7: | Investigate how natural disasters have affected human life in Florida. | |
SC.6.E.7.8: | Describe ways human beings protect themselves from hazardous weather and sun exposure. | |
SC.6.E.7.9: | Describe how the composition and structure of the atmosphere protects life and insulates the planet. | |
SC.7.E.6.1: | Describe the layers of the solid Earth, including the lithosphere, the hot convecting mantle, and the dense metallic liquid and solid cores. | |
SC.7.E.6.2: | Identify the patterns within the rock cycle and relate them to surface events (weathering and erosion) and sub-surface events (plate tectonics and mountain building). | |
SC.7.E.6.3: | Identify current methods for measuring the age of Earth and its parts, including the law of superposition and radioactive dating. | |
SC.7.E.6.4: | Explain and give examples of how physical evidence supports scientific theories that Earth has evolved over geologic time due to natural processes. | |
SC.7.E.6.5: | Explore the scientific theory of plate tectonics by describing how the movement of Earth's crustal plates causes both slow and rapid changes in Earth's surface, including volcanic eruptions, earthquakes, and mountain building. | |
SC.7.E.6.6: | Identify the impact that humans have had on Earth, such as deforestation, urbanization, desertification, erosion, air and water quality, changing the flow of water. | |
SC.7.E.6.7: | Recognize that heat flow and movement of material within Earth causes earthquakes and volcanic eruptions, and creates mountains and ocean basins. | |
SC.7.N.1.1: | Define a problem from the seventh grade curriculum, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigation of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. | |
SC.7.N.1.2: | Differentiate replication (by others) from repetition (multiple trials). | |
SC.7.N.1.3: | Distinguish between an experiment (which must involve the identification and control of variables) and other forms of scientific investigation and explain that not all scientific knowledge is derived from experimentation. | |
SC.7.N.1.4: | Identify test variables (independent variables) and outcome variables (dependent variables) in an experiment. | |
SC.7.N.1.5: | Describe the methods used in the pursuit of a scientific explanation as seen in different fields of science such as biology, geology, and physics. | |
SC.7.N.1.6: | Explain that empirical evidence is the cumulative body of observations of a natural phenomenon on which scientific explanations are based. | |
SC.7.N.1.7: | Explain that scientific knowledge is the result of a great deal of debate and confirmation within the science community. | |
SC.7.N.2.1: | Identify an instance from the history of science in which scientific knowledge has changed when new evidence or new interpretations are encountered. | |
SC.7.N.3.1: | Recognize and explain the difference between theories and laws and give several examples of scientific theories and the evidence that supports them. | |
SC.7.N.3.2: | Identify the benefits and limitations of the use of scientific models. | |
SC.8.E.5.1: | Recognize that there are enormous distances between objects in space and apply our knowledge of light and space travel to understand this distance. | |
SC.8.E.5.2: | Recognize that the universe contains many billions of galaxies and that each galaxy contains many billions of stars. | |
SC.8.E.5.3: | Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition. | |
SC.8.E.5.4: | Explore the Law of Universal Gravitation by explaining the role that gravity plays in the formation of planets, stars, and solar systems and in determining their motions. | |
SC.8.E.5.5: | Describe and classify specific physical properties of stars: apparent magnitude (brightness), temperature (color), size, and luminosity (absolute brightness). | |
SC.8.E.5.6: | Create models of solar properties including: rotation, structure of the Sun, convection, sunspots, solar flares, and prominences. | |
SC.8.E.5.7: | Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions. | |
SC.8.E.5.8: | Compare various historical models of the Solar System, including geocentric and heliocentric. | |
SC.8.E.5.9: | Explain the impact of objects in space on each other including:
| |
SC.8.E.5.10: | Assess how technology is essential to science for such purposes as access to outer space and other remote locations, sample collection, measurement, data collection and storage, computation, and communication of information. | |
SC.8.E.5.11: | Identify and compare characteristics of the electromagnetic spectrum such as wavelength, frequency, use, and hazards and recognize its application to an understanding of planetary images and satellite photographs. | |
SC.8.E.5.12: | Summarize the effects of space exploration on the economy and culture of Florida. | |
SC.8.N.1.1: | Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. | |
SC.8.N.1.2: | Design and conduct a study using repeated trials and replication. | |
SC.8.N.1.3: | Use phrases such as "results support" or "fail to support" in science, understanding that science does not offer conclusive 'proof' of a knowledge claim. | |
SC.8.N.1.4: | Explain how hypotheses are valuable if they lead to further investigations, even if they turn out not to be supported by the data. | |
SC.8.N.1.5: | Analyze the methods used to develop a scientific explanation as seen in different fields of science. | |
SC.8.N.1.6: | Understand that scientific investigations involve the collection of relevant empirical evidence, the use of logical reasoning, and the application of imagination in devising hypotheses, predictions, explanations and models to make sense of the collected evidence. | |
SC.8.N.2.1: | Distinguish between scientific and pseudoscientific ideas. | |
SC.8.N.2.2: | Discuss what characterizes science and its methods. | |
SC.8.N.3.1: | Select models useful in relating the results of their own investigations. | |
SC.8.N.3.2: | Explain why theories may be modified but are rarely discarded. | |
SC.8.N.4.1: | Explain that science is one of the processes that can be used to inform decision making at the community, state, national, and international levels. | |
SC.8.N.4.2: | Explain how political, social, and economic concerns can affect science, and vice versa. | |
SC.912.E.5.4: | Explain the physical properties of the Sun and its dynamic nature and connect them to conditions and events on Earth. | |
SC.912.E.6.1: | Describe and differentiate the layers of Earth and the interactions among them. | |
SC.912.E.6.2: | Connect surface features to surface processes that are responsible for their formation. | |
SC.912.E.6.3: | Analyze the scientific theory of plate tectonics and identify related major processes and features as a result of moving plates. | |
SC.912.E.7.3: | Differentiate and describe the various interactions among Earth systems, including: atmosphere, hydrosphere, cryosphere, geosphere, and biosphere. | |
SC.912.E.7.5: | Predict future weather conditions based on present observations and conceptual models and recognize limitations and uncertainties of such predictions. | |
SC.912.E.7.6: | Relate the formation of severe weather to the various physical factors. | |
MA.K12.MTR.1.1: | Actively participate in effortful learning both individually and collectively. Mathematicians who participate in effortful learning both individually and with others:
| |
MA.K12.MTR.2.1: | Demonstrate understanding by representing problems in multiple ways. Mathematicians who demonstrate understanding by representing problems in multiple ways:
| |
MA.K12.MTR.3.1: | Complete tasks with mathematical fluency. Mathematicians who complete tasks with mathematical fluency:
| |
MA.K12.MTR.4.1: | Engage in discussions that reflect on the mathematical thinking of self and others. Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others:
| |
MA.K12.MTR.5.1: | Use patterns and structure to help understand and connect mathematical concepts. Mathematicians who use patterns and structure to help understand and connect mathematical concepts:
| |
MA.K12.MTR.6.1: | Assess the reasonableness of solutions. Mathematicians who assess the reasonableness of solutions:
| |
MA.K12.MTR.7.1: | Apply mathematics to real-world contexts. Mathematicians who apply mathematics to real-world contexts:
| |
ELA.K12.EE.1.1: | Cite evidence to explain and justify reasoning.
| |
ELA.K12.EE.2.1: | Read and comprehend grade-level complex texts proficiently.
| |
ELA.K12.EE.3.1: | Make inferences to support comprehension.
| |
ELA.K12.EE.4.1: | Use appropriate collaborative techniques and active listening skills when engaging in discussions in a variety of situations.
| |
ELA.K12.EE.5.1: | Use the accepted rules governing a specific format to create quality work.
| |
ELA.K12.EE.6.1: | Use appropriate voice and tone when speaking or writing.
| |
ELD.K12.ELL.SC.1: | English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science. | |
ELD.K12.ELL.SI.1: | English language learners communicate for social and instructional purposes within the school setting. | |
HE.6.C.1.3 (Archived Standard): | Identify environmental factors that affect personal health. |
General Course Information and Notes
General Notes
Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the middle school level, all students should have multiple opportunities every week to explore science laboratory investigations (labs). School laboratory investigations are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the middle school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (NRC 2006, p. 77; NSTA, 2007).
Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor. Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted. Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.
Special Notes:
Instructional Practices
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:
- Ensuring wide reading from complex text that varies in length.
- Making close reading and rereading of texts central to lessons.
- Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
- Emphasizing students supporting answers based upon evidence from the text.
- Providing extensive research and writing opportunities (claims and evidence).
Science and Engineering Practices (NRC Framework for K-12 Science Education, 2010)
- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.
Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards
This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.
English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf
Additional Instructional Resources:
A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.
General Information
Course Number: 2001020 |
Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 6 to 8 Education Courses > Subject: Science > SubSubject: Earth/Space Sciences > |
Abbreviated Title: M/J EARTH/SPA SCI ADV | |
Course Attributes:
|
|
Course Type: Core Academic Course | Course Level: 3 |
Course Status: State Board Approved | |
Grade Level(s): 6,7,8 | |
Educator Certifications
Science (Secondary Grades 7-12) |
Middle Grades Integrated Curriculum (Middle Grades 5-9) |
Earth/Space Science (Grades 6-12) |
Middle Grades General Science (Middle Grades 5-9) |
Chemistry (Grades 6-12) |
Physics (Grades 6-12) |
Classical Education - Restricted (Elementary and Secondary Grades K-12) Section 1012.55(5), F.S., authorizes the issuance of a classical education teaching certificate, upon the request of a classical school, to any applicant who fulfills the requirements of s. 1012.56(2)(a)-(f) and (11), F.S., and Rule 6A-4.004, F.A.C. Classical schools must meet the requirements outlined in s. 1012.55(5), F.S., and be listed in the FLDOE Master School ID database, to request a restricted classical education teaching certificate on behalf of an applicant. |