Anatomy and Physiology Honors (#2000360) 


This document was generated on CPALMS - www.cpalms.org
You are not viewing the current course, please click the current year’s tab.

Course Standards

Name Description
SC.912.L.14.11: Classify and state the defining characteristics of epithelial tissue, connective tissue, muscle tissue, and nervous tissue.
SC.912.L.14.12: Describe the anatomy and histology of bone tissue.
SC.912.L.14.13: Distinguish between bones of the axial skeleton and the appendicular skeleton.
SC.912.L.14.14: Identify the major bones of the axial and appendicular skeleton.
SC.912.L.14.15: Identify major markings (such as foramina, fossae, tubercles, etc.) on a skeleton. Explain why these markings are important.
SC.912.L.14.16: Describe the anatomy and histology, including ultrastructure, of muscle tissue.
SC.912.L.14.17: List the steps involved in the sliding filament of muscle contraction.
SC.912.L.14.18: Describe signal transmission across a myoneural junction.
SC.912.L.14.19: Explain the physiology of skeletal muscle.
SC.912.L.14.20: Identify the major muscles of the human on a model or diagram.
SC.912.L.14.21: Describe the anatomy, histology, and physiology of the central and peripheral nervous systems and name the major divisions of the nervous system.
SC.912.L.14.22: Describe the physiology of nerve conduction, including the generator potential, action potential, and the synapse.
SC.912.L.14.23: Identify the parts of a reflex arc.
SC.912.L.14.25: Identify the major parts of a cross section through the spinal cord.
SC.912.L.14.27: Identify the functions of the major parts of the brain, including the meninges, medulla, pons, midbrain, hypothalamus, thalamus, cerebellum and cerebrum.
SC.912.L.14.28: Identify the major functions of the spinal cord.
SC.912.L.14.29: Define the terms endocrine and exocrine.
SC.912.L.14.30: Compare endocrine and neural controls of physiology.
SC.912.L.14.31: Describe the physiology of hormones including the different types and the mechanisms of their action.
SC.912.L.14.34: Describe the composition and physiology of blood, including that of the plasma and the formed elements.
SC.912.L.14.35: Describe the steps in hemostasis, including the mechanism of coagulation. Include the basis for blood typing and transfusion reactions.
SC.912.L.14.36: Describe the factors affecting blood flow through the cardiovascular system.
SC.912.L.14.37: Explain the components of an electrocardiogram.
SC.912.L.14.38: Describe normal heart sounds and what they mean.
SC.912.L.14.39: Describe hypertension and some of the factors that produce it.
SC.912.L.14.40: Describe the histology of the major arteries and veins of systemic, pulmonary, hepatic portal, and coronary circulation.
SC.912.L.14.41: Describe fetal circulation and changes that occur to the circulatory system at birth.
SC.912.L.14.42: Describe the anatomy and the physiology of the lymph system.
SC.912.L.14.43: Describe the histology of the respiratory system.
SC.912.L.14.44: Describe the physiology of the respiratory system including the mechanisms of ventilation, gas exchange, gas transport and the mechanisms that control the rate of ventilation.
SC.912.L.14.45: Describe the histology of the alimentary canal and its associated accessory organs.
SC.912.L.14.46: Describe the physiology of the digestive system, including mechanical digestion, chemical digestion, absorption and the neural and hormonal mechanisms of control.
SC.912.L.14.47: Describe the physiology of urine formation by the kidney.
SC.912.L.14.48: Describe the anatomy, histology, and physiology of the ureters, the urinary bladder and the urethra.
SC.912.L.14.49: Identify the major functions associated with the sympathetic and parasympathetic nervous systems.
SC.912.L.14.50: Describe the structure of vertebrate sensory organs. Relate structure to function in vertebrate sensory systems.
SC.912.L.14.51: Describe the function of the vertebrate integumentary system.
SC.912.L.14.52: Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and antibiotics.
SC.912.L.16.8: Explain the relationship between mutation, cell cycle, and uncontrolled cell growth potentially resulting in cancer.
SC.912.L.16.10: Evaluate the impact of biotechnology on the individual, society and the environment, including medical and ethical issues.
SC.912.L.16.13: Describe the basic anatomy and physiology of the human reproductive system. Describe the process of human development from fertilization to birth and major changes that occur in each trimester of pregnancy.
SC.912.L.18.2: Describe the important structural characteristics of monosaccharides, disaccharides, and polysaccharides and explain the functions of carbohydrates in living things.
SC.912.L.18.3: Describe the structures of fatty acids, triglycerides, phospholipids, and steroids. Explain the functions of lipids in living organisms. Identify some reactions that fatty acids undergo. Relate the structure and function of cell membranes.
SC.912.L.18.4: Describe the structures of proteins and amino acids. Explain the functions of proteins in living organisms. Identify some reactions that amino acids undergo. Relate the structure and function of enzymes.
SC.912.L.18.6: Discuss the role of anaerobic respiration in living things and in human society.
SC.912.L.18.8: Identify the reactants, products, and basic functions of aerobic and anaerobic cellular respiration.
SC.912.L.18.11: Explain the role of enzymes as catalysts that lower the activation energy of biochemical reactions. Identify factors, such as pH and temperature, and their effect on enzyme activity.
SC.912.N.1.1: Define a problem based on a specific  body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following: 
  1. Pose questions about the natural world, (Articulate the purpose of the investigation and identify the relevant scientific concepts).
  2. Conduct systematic observations, (Write procedures that are clear and replicable. Identify observables and examine relationships between test (independent) variable and outcome (dependent) variable. Employ appropriate methods for accurate and consistent observations; conduct and record measurements at appropriate levels of precision. Follow safety guidelines).
  3. Examine books and other sources of information to see what is already known,
  4. Review what is known in light of empirical evidence, (Examine whether available empirical evidence can be interpreted in terms of existing knowledge and models, and if not, modify or develop new models).
  5. Plan investigations, (Design and evaluate a scientific investigation).
  6. Use tools to gather, analyze, and interpret data (this includes the use of measurement in metric and other systems, and also the generation and interpretation of graphical representations of data, including data tables and graphs), (Collect data or evidence in an organized way. Properly use instruments, equipment, and materials (e.g., scales, probeware, meter sticks, microscopes, computers) including set-up, calibration, technique, maintenance, and storage).
  7. Pose answers, explanations, or descriptions of events,
  8. Generate explanations that explicate or describe natural phenomena (inferences),
  9. Use appropriate evidence and reasoning to justify these explanations to others,
  10. Communicate results of scientific investigations, and
  11. Evaluate the merits of the explanations produced by others.
SC.912.N.1.2: Describe and explain what characterizes science and its methods.
MA.K12.MTR.1.1: Actively participate in effortful learning both individually and collectively.  

Mathematicians who participate in effortful learning both individually and with others: 

  • Analyze the problem in a way that makes sense given the task. 
  • Ask questions that will help with solving the task. 
  • Build perseverance by modifying methods as needed while solving a challenging task. 
  • Stay engaged and maintain a positive mindset when working to solve tasks. 
  • Help and support each other when attempting a new method or approach.

 

Clarifications:
Teachers who encourage students to participate actively in effortful learning both individually and with others:
  • Cultivate a community of growth mindset learners. 
  • Foster perseverance in students by choosing tasks that are challenging. 
  • Develop students’ ability to analyze and problem solve. 
  • Recognize students’ effort when solving challenging problems.
MA.K12.MTR.2.1: Demonstrate understanding by representing problems in multiple ways.  

Mathematicians who demonstrate understanding by representing problems in multiple ways:  

  • Build understanding through modeling and using manipulatives.
  • Represent solutions to problems in multiple ways using objects, drawings, tables, graphs and equations.
  • Progress from modeling problems with objects and drawings to using algorithms and equations.
  • Express connections between concepts and representations.
  • Choose a representation based on the given context or purpose.
Clarifications:
Teachers who encourage students to demonstrate understanding by representing problems in multiple ways: 
  • Help students make connections between concepts and representations.
  • Provide opportunities for students to use manipulatives when investigating concepts.
  • Guide students from concrete to pictorial to abstract representations as understanding progresses.
  • Show students that various representations can have different purposes and can be useful in different situations. 
MA.K12.MTR.3.1: Complete tasks with mathematical fluency. 

Mathematicians who complete tasks with mathematical fluency:

  • Select efficient and appropriate methods for solving problems within the given context.
  • Maintain flexibility and accuracy while performing procedures and mental calculations.
  • Complete tasks accurately and with confidence.
  • Adapt procedures to apply them to a new context.
  • Use feedback to improve efficiency when performing calculations. 
Clarifications:
Teachers who encourage students to complete tasks with mathematical fluency:
  • Provide students with the flexibility to solve problems by selecting a procedure that allows them to solve efficiently and accurately.
  • Offer multiple opportunities for students to practice efficient and generalizable methods.
  • Provide opportunities for students to reflect on the method they used and determine if a more efficient method could have been used. 
MA.K12.MTR.4.1: Engage in discussions that reflect on the mathematical thinking of self and others. 

Mathematicians who engage in discussions that reflect on the mathematical thinking of self and others:

  • Communicate mathematical ideas, vocabulary and methods effectively.
  • Analyze the mathematical thinking of others.
  • Compare the efficiency of a method to those expressed by others.
  • Recognize errors and suggest how to correctly solve the task.
  • Justify results by explaining methods and processes.
  • Construct possible arguments based on evidence. 
Clarifications:
Teachers who encourage students to engage in discussions that reflect on the mathematical thinking of self and others:
  • Establish a culture in which students ask questions of the teacher and their peers, and error is an opportunity for learning.
  • Create opportunities for students to discuss their thinking with peers.
  • Select, sequence and present student work to advance and deepen understanding of correct and increasingly efficient methods.
  • Develop students’ ability to justify methods and compare their responses to the responses of their peers. 
MA.K12.MTR.5.1: Use patterns and structure to help understand and connect mathematical concepts. 

Mathematicians who use patterns and structure to help understand and connect mathematical concepts:

  • Focus on relevant details within a problem.
  • Create plans and procedures to logically order events, steps or ideas to solve problems.
  • Decompose a complex problem into manageable parts.
  • Relate previously learned concepts to new concepts.
  • Look for similarities among problems.
  • Connect solutions of problems to more complicated large-scale situations. 
Clarifications:
Teachers who encourage students to use patterns and structure to help understand and connect mathematical concepts:
  • Help students recognize the patterns in the world around them and connect these patterns to mathematical concepts.
  • Support students to develop generalizations based on the similarities found among problems.
  • Provide opportunities for students to create plans and procedures to solve problems.
  • Develop students’ ability to construct relationships between their current understanding and more sophisticated ways of thinking.
MA.K12.MTR.6.1: Assess the reasonableness of solutions. 

Mathematicians who assess the reasonableness of solutions: 

  • Estimate to discover possible solutions.
  • Use benchmark quantities to determine if a solution makes sense.
  • Check calculations when solving problems.
  • Verify possible solutions by explaining the methods used.
  • Evaluate results based on the given context. 
Clarifications:
Teachers who encourage students to assess the reasonableness of solutions:
  • Have students estimate or predict solutions prior to solving.
  • Prompt students to continually ask, “Does this solution make sense? How do you know?”
  • Reinforce that students check their work as they progress within and after a task.
  • Strengthen students’ ability to verify solutions through justifications. 
MA.K12.MTR.7.1: Apply mathematics to real-world contexts. 

Mathematicians who apply mathematics to real-world contexts:

  • Connect mathematical concepts to everyday experiences.
  • Use models and methods to understand, represent and solve problems.
  • Perform investigations to gather data or determine if a method is appropriate. • Redesign models and methods to improve accuracy or efficiency. 
Clarifications:
Teachers who encourage students to apply mathematics to real-world contexts:
  • Provide opportunities for students to create models, both concrete and abstract, and perform investigations.
  • Challenge students to question the accuracy of their models and methods.
  • Support students as they validate conclusions by comparing them to the given situation.
  • Indicate how various concepts can be applied to other disciplines.
ELA.K12.EE.1.1: Cite evidence to explain and justify reasoning.
Clarifications:
K-1 Students include textual evidence in their oral communication with guidance and support from adults. The evidence can consist of details from the text without naming the text. During 1st grade, students learn how to incorporate the evidence in their writing.

2-3 Students include relevant textual evidence in their written and oral communication. Students should name the text when they refer to it. In 3rd grade, students should use a combination of direct and indirect citations.

4-5 Students continue with previous skills and reference comments made by speakers and peers. Students cite texts that they’ve directly quoted, paraphrased, or used for information. When writing, students will use the form of citation dictated by the instructor or the style guide referenced by the instructor. 

6-8 Students continue with previous skills and use a style guide to create a proper citation.

9-12 Students continue with previous skills and should be aware of existing style guides and the ways in which they differ.

ELA.K12.EE.2.1: Read and comprehend grade-level complex texts proficiently.
Clarifications:
See Text Complexity for grade-level complexity bands and a text complexity rubric.
ELA.K12.EE.3.1: Make inferences to support comprehension.
Clarifications:
Students will make inferences before the words infer or inference are introduced. Kindergarten students will answer questions like “Why is the girl smiling?” or make predictions about what will happen based on the title page. Students will use the terms and apply them in 2nd grade and beyond.
ELA.K12.EE.4.1: Use appropriate collaborative techniques and active listening skills when engaging in discussions in a variety of situations.
Clarifications:
In kindergarten, students learn to listen to one another respectfully.

In grades 1-2, students build upon these skills by justifying what they are thinking. For example: “I think ________ because _______.” The collaborative conversations are becoming academic conversations.

In grades 3-12, students engage in academic conversations discussing claims and justifying their reasoning, refining and applying skills. Students build on ideas, propel the conversation, and support claims and counterclaims with evidence.

ELA.K12.EE.5.1: Use the accepted rules governing a specific format to create quality work.
Clarifications:
Students will incorporate skills learned into work products to produce quality work. For students to incorporate these skills appropriately, they must receive instruction. A 3rd grade student creating a poster board display must have instruction in how to effectively present information to do quality work.
ELA.K12.EE.6.1: Use appropriate voice and tone when speaking or writing.
Clarifications:
In kindergarten and 1st grade, students learn the difference between formal and informal language. For example, the way we talk to our friends differs from the way we speak to adults. In 2nd grade and beyond, students practice appropriate social and academic language to discuss texts.
HE.912.C.1.3: Evaluate how environment and personal health are interrelated.
Clarifications:
Food options within a community; prenatal-care services; availability of recreational facilities; air quality; weather-safety awareness; and weather, air, and water conditions.
HE.912.C.1.5: Analyze strategies for prevention, detection, and treatment of communicable and chronic diseases.
Clarifications:
Health prevention, detection, and treatment of: breast and testicular cancer, suicide, obesity, and industrial-related chronic disease.
HE.912.C.1.7: Analyze how heredity and family history can impact personal health.
Clarifications:
Drug use, family obesity, heart disease, mental health, and non-communicable illness or disease.
ELD.K12.ELL.SC.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.
ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.



General Course Information and Notes

GENERAL NOTES

While the content focus of this course is consistent with the Anatomy and Physiology course, students will explore these concepts in greater depth. In general, the academic pace and rigor will be greatly increased for honors level course work. Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

Special Notes: 
Instructional Practices
 
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis: 

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).


Science and Engineering Practices
 (NRC Framework for K-12 Science Education, 2010)

  • Asking questions (for science) and defining problems (for engineering).
  • Developing and using models.
  • Planning and carrying out investigations.
  • Analyzing and interpreting data.
  • Using mathematics, information and computer technology, and computational thinking.
  • Constructing explanations (for science) and designing solutions (for engineering).
  • Engaging in argument from evidence.
  • Obtaining, evaluating, and communicating information.

Florida’s Benchmarks for Excellent Student Thinking (B.E.S.T.) Standards

This course includes Florida’s B.E.S.T. ELA Expectations (EE) and Mathematical Thinking and Reasoning Standards (MTRs) for students. Florida educators should intentionally embed these standards within the content and their instruction as applicable. For guidance on the implementation of the EEs and MTRs, please visit https://www.cpalms.org/Standards/BEST_Standards.aspx and select the appropriate B.E.S.T. Standards package.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

Additional Instructional Resources:
A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.


General Information

Course Number: 2000360 Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 9 to 12 and Adult Education Courses > Subject: Science > SubSubject: Biological Sciences >
Abbreviated Title: ANAT PHYSIO HON
Number of Credits: One (1) credit
Course Attributes:
  • Honors
  • Highly Qualified Teacher (HQT) Required
  • Florida Standards Course
Course Type: Core Academic Course Course Level: 3
Course Status: State Board Approved
Grade Level(s): 9,10,11,12
Graduation Requirement: Equally Rigorous Science



Educator Certifications

Science (Secondary Grades 7-12)
Biology (Grades 6-12)
Health (Elementary and Secondary Grades K-12)
Health Education (Secondary Grades 7-12)


There are more than 1028 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: https://cpalms.org/PreviewCourse/Preview/21053