Analysis of Functions Honors (#1201315) 


This document was generated on CPALMS - www.cpalms.org
You are not viewing the current course, please click the current year’s tab.
The course was/will be terminated at the end of School Year 2021 - 2022

Course Standards

Name Description
MAFS.912.A-APR.2.2 (Archived Standard): Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
MAFS.912.A-APR.4.6 (Archived Standard): Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
MAFS.912.A-APR.4.7 (Archived Standard): Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
MAFS.912.F-BF.1.1 (Archived Standard): Write a function that describes a relationship between two quantities.
  1. Determine an explicit expression, a recursive process, or steps for calculation from a context.
  2. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
  3. Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.
MAFS.912.F-BF.2.4 (Archived Standard): Find inverse functions.
  1. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2 x³ or f(x) = (x+1)/(x–1) for x ≠ 1.
  2. Verify by composition that one function is the inverse of another.
  3. Read values of an inverse function from a graph or a table, given that the function has an inverse.
  4. Produce an invertible function from a non-invertible function by restricting the domain.
MAFS.912.F-BF.2.5 (Archived Standard): Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
MAFS.912.F-IF.3.7 (Archived Standard): Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

  1. Graph linear and quadratic functions and show intercepts, maxima, and minima.
  2. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
  3. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 
  4. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. 
  5. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift.
MAFS.912.F-IF.3.8 (Archived Standard): Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
  1. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
  2. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = , y = , y = , y = , and classify them as representing exponential growth or decay.
MAFS.912.F-LE.1.4 (Archived Standard): For exponential models, express as a logarithm the solution to = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.
MAFS.912.F-TF.1.3 (Archived Standard): Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosine, and tangent for π–x, π+x, and 2π–x in terms of their values for x, where x is any real number.
MAFS.912.F-TF.1.4 (Archived Standard): Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
MAFS.912.F-TF.2.5 (Archived Standard): Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
MAFS.912.F-TF.2.6 (Archived Standard): Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
MAFS.912.F-TF.2.7 (Archived Standard): Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.
MAFS.912.F-TF.3.8 (Archived Standard): Prove the Pythagorean identity sin²(θ) + cos²(θ) = 1 and use it to calculate trigonometric ratios.
MAFS.912.N-CN.3.9 (Archived Standard): Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
MAFS.K12.MP.1.1 (Archived Standard):

Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

MAFS.K12.MP.2.1 (Archived Standard):

Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

MAFS.K12.MP.3.1 (Archived Standard):

Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

MAFS.K12.MP.4.1 (Archived Standard):

Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

MAFS.K12.MP.5.1 (Archived Standard): Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
MAFS.K12.MP.6.1 (Archived Standard):

Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

MAFS.K12.MP.7.1 (Archived Standard):

Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. In the expression x² + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 – 3(x – y)² as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

MAFS.K12.MP.8.1 (Archived Standard):

Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y – 2)/(x – 1) = 3. Noticing the regularity in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x² + x + 1), and (x – 1)(x³ + x² + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

LAFS.1112.RST.1.3 (Archived Standard): Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
LAFS.1112.RST.2.4 (Archived Standard): Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.
LAFS.1112.RST.3.7 (Archived Standard): Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
LAFS.1112.SL.1.1 (Archived Standard): Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 11–12 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.
  1. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
  2. Work with peers to promote civil, democratic discussions and decision-making, set clear goals and deadlines, and establish individual roles as needed.
  3. Propel conversations by posing and responding to questions that probe reasoning and evidence; ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.
  4. Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.
LAFS.1112.SL.1.2 (Archived Standard): Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.
LAFS.1112.SL.1.3 (Archived Standard): Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.
LAFS.1112.SL.2.4 (Archived Standard): Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.
LAFS.1112.WHST.1.1 (Archived Standard): Write arguments focused on discipline-specific content.
  1. Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.
  2. Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline-appropriate form that anticipates the audience’s knowledge level, concerns, values, and possible biases.
  3. Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
  4. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
  5. Provide a concluding statement or section that follows from or supports the argument presented.
LAFS.1112.WHST.2.4 (Archived Standard): Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
LAFS.1112.WHST.3.9 (Archived Standard): Draw evidence from informational texts to support analysis, reflection, and research.
ELD.K12.ELL.MA.1: English language learners communicate information, ideas and concepts necessary for academic success in the content area of Mathematics.
ELD.K12.ELL.SI.1: English language learners communicate for social and instructional purposes within the school setting.



General Course Information and Notes

GENERAL NOTES

Honors and Advanced Level Course Note: Advanced courses require a greater demand on students through increased academic rigor.  Academic rigor is obtained through the application, analysis, evaluation, and creation of complex ideas that are often abstract and multi-faceted.  Students are challenged to think and collaborate critically on the content they are learning. Honors level rigor will be achieved by increasing text complexity through text selection, focus on high-level qualitative measures, and complexity of task. Instruction will be structured to give students a deeper understanding of conceptual themes and organization within and across disciplines. Academic rigor is more than simply assigning to students a greater quantity of work.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Mathematics. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL’s need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link:
https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/ma.pdf


General Information

Course Number: 1201315 Course Path: Section: Grades PreK to 12 Education Courses > Grade Group: Grades 9 to 12 and Adult Education Courses > Subject: Mathematics > SubSubject: Mathematical Analysis >
Abbreviated Title: ANALYSIS OF FUNC HON
Number of Credits: Half credit (.5)
Course Attributes:
  • Honors
  • Highly Qualified Teacher (HQT) Required
  • Florida Standards Course
Course Type: Core Academic Course Course Level: 3
Course Status: Terminated
Grade Level(s): 9,10,11,12
Graduation Requirement: Mathematics



Educator Certifications

Mathematics (Grades 6-12)


There are more than 397 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: https://cpalms.org/PreviewCourse/Preview/13052