SC.912.N.1.4

Identify sources of information and assess their reliability according to the strict standards of scientific investigation.
General Information
Subject Area: Science
Grade: 912
Body of Knowledge: Nature of Science
Idea: Level 3: Strategic Thinking & Complex Reasoning
Standard: The Practice of Science -

A: Scientific inquiry is a multifaceted activity; The processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation.

B: The processes of science frequently do not correspond to the traditional portrayal of "the scientific method."

C: Scientific argumentation is a necessary part of scientific inquiry and plays an important role in the generation and validation of scientific knowledge.

D: Scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Not only does science require creativity in its methods and processes, but also in its questions and explanations.

Date Adopted or Revised: 02/08
Date of Last Rating: 05/08
Status: State Board Approved

Related Courses

This benchmark is part of these courses.
2001350: Astronomy Solar/Galactic (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2020910: Astronomy Solar/Galactic Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2000310: Biology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2000320: Biology 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2000330: Biology 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2022, 2022 - 2024, 2024 and beyond (current))
2000430: Biology Technology (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
3027010: Biotechnology 1 (Specifically in versions: 2015 - 2022, 2022 and beyond (current))
3027020: Biotechnology 2 (Specifically in versions: 2015 and beyond (current))
2003340: Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003350: Chemistry 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003360: Chemistry 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2001310: Earth/Space Science (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2001320: Earth/Space Science Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2001340: Environmental Science (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002480: Forensic Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current))
2002490: Forensic Sciences 2 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current))
2002400: Integrated Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002410: Integrated Science 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002420: Integrated Science 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002450: Integrated Science 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2000390: Limnology (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2002500: Marine Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002510: Marine Science 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002520: Marine Science 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002530: Marine Science 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003400: Nuclear Radiation (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2020710: Nuclear Radiation Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003310: Physical Science (Specifically in versions: 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003320: Physical Science Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003410: Physics 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003600: Principles of Technology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003610: Principles of Technology 2 (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2002540: Solar Energy Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2002550: Solar Energy 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2002330: Space Technology and Engineering (Specifically in versions: 2014 - 2015, 2015 - 2018 (course terminated))
2000800: Florida's Preinternational Baccalaureate Biology 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003800: Florida's Preinternational Baccalaureate Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
1700300: Research 1 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
1700310: Research 2 (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
7920011: Access Chemistry 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))
7920015: Access Biology 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))
7920020: Access Earth/Space Science (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))
7920025: Access Integrated Science 1 (Specifically in versions: 2014 - 2015, 2015 - 2018, 2018 - 2023, 2023 and beyond (current))
2000315: Biology 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2000500: Bioscience 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
2000510: Bioscience 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
2000520: Bioscience 3 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
2002405: Integrated Science 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated))
2002425: Integrated Science 2 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2020 (course terminated))
2003345: Chemistry 1 for Credit Recovery (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current))
2003500: Renewable Energy 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current))
2003838: Florida's Preinternational Baccalaureate Physics 2 (Specifically in versions: 2015 and beyond (current))
7920022: Access Physical Science (Specifically in versions: 2016 - 2018, 2018 - 2023, 2023 and beyond (current))
2001341: Environmental Science Honors (Specifically in versions: 2016 - 2022, 2022 - 2024, 2024 and beyond (current))
2001330: Meteorology Honors (Specifically in versions: 2016 - 2019, 2019 - 2022, 2022 - 2024, 2024 and beyond (current))
1700305: Fundamentals of Research (Specifically in versions: 2021 - 2022, 2022 - 2024, 2024 and beyond (current))

Related Access Points

Alternate version of this benchmark for students with significant cognitive disabilities.
SC.912.N.1.In.1: Identify a problem based on a specific body of knowledge, including life science, earth and space science, or physical science, and do the following: 1. Identify a scientific question 2. Examine reliable sources of informtion to identify what is already known 3. Develop a possible explanation (hypothesis) 4. Plan and carry out an experiment 5. Gather data based on measurement and observations 6. Evaluate the data 7. Use the data to support reasonable explanations, inferences, and conclusions.
SC.912.N.1.Su.1: Recognize a problem based on a specific body of knowledge, including life science, earth and space science, or physical science, and do the following: 1. Recognize a scientific question 2. Use reliable information and identify what is already known 3. Create possible explanation 4. Carry out a planned experiment 5. Record observations 6. Summarize results 7. Reach a reasonable conclusion.
SC.912.N.1.Pa.1: Recognize a problem related to a specific body of knowledge, including life science, earth and space science, or physical science, and do the following: 1. Observe objects and activities 2. Follow planned procedures 3. Recognize a solution.

Related Resources

Vetted resources educators can use to teach the concepts and skills in this benchmark.

Lesson Plans

Stop Invading My Space:

Students will work in small groups to review information about an invasive species in Florida and learn to recognize scientifically reliable sources. Groups will teach their classmates about the assigned species and discuss some of the impacts that species has on the biodiversity of the local ecosystem where they have been introduced.

Students will explore the role of the state government, specifically the Florida Wildlife Commission and the Florida Department of Agriculture, in preserving the biodiversity of Florida. Students will relate the creation of invasive species laws to the impacts government can have on the environment and daily lives of citizens.

Type: Lesson Plan

Sea Ice Analysis:

The changing climate is an important topic for both scientific analysis and worldly knowledge. This lesson uses data collected by the National Snow and Ice Data Center to create and use mathematical models as a predictive tool and do critical analysis of sea ice loss.

Type: Lesson Plan

Help Behind-the-Scenes at a Museum as a Citizen Scientist:

Students will learn about the importance of biodiversity research collections (specifically, herbaria), the types of data that their specimens hold, the process of digital data creation about the specimens, and the online publishers of that digital data. Students will act as citizen scientists and transcribe labels of plant specimens then explore the research value of the data that they create.

Type: Lesson Plan

Investigating the pH of Soils:

In this activity students will conduct research then test the effects of adding products to soil. Students will learn about soil pH, what factors affect the pH of soil and how important it is to the growth of plants. Students will learn to use reputable resources to support their findings. Students will be expected to write a detailed lab report that thoroughly explores the concept while integrating the data from their investigation.

Type: Lesson Plan

Cleaning Up Your Act:

In this Model Eliciting Activity (MEA), students will address a real world engineering problem in which they must work as a team to design a procedure to select the best material for cleaning up an oil spill. The main focus of this MEA is to recognize the consequences of a catastrophic event, and understand the environmental and economical impact based on data analysis. Students will conduct individual and team investigations in order to arrive at a scientifically sound solution to the problem.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Type: Lesson Plan

Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Perspectives Video: Expert

Library of Scientific Plant Samples: Step inside an Herbarium:

Listen as Dr. Austin Mast describes how and why an herbarium collects, maintains, and distributes plant samples for scientific research.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Teaching Ideas

Crowd-sourced Herbarium Data Transcription:

Listen closely as Dr. Austin Mast explains how students can help scientists by transcribing data from real herbarium plant samples. 

Related Site: 

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Teaching Idea

Using the Encyclopedia of Life as a Source for Science Information:

Dr. Jeff Holmes from the Harvard University Museum of Comparative Zoology discusses the Encyclopedia of Life as a teaching resource and as an example of reliable information.

This video was created in collaboration with the Okaloosa County SCIENCE Partnership including the Smithsonian Institution and Harvard University.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Teaching Idea

Current Events:

This teacher has an idea about how to bring higher-level reading skills to science class.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Teaching Idea

Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

STEM Lessons - Model Eliciting Activity

Cleaning Up Your Act:

In this Model Eliciting Activity (MEA), students will address a real world engineering problem in which they must work as a team to design a procedure to select the best material for cleaning up an oil spill. The main focus of this MEA is to recognize the consequences of a catastrophic event, and understand the environmental and economical impact based on data analysis. Students will conduct individual and team investigations in order to arrive at a scientifically sound solution to the problem.

Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx

Original Student Tutorials Science - Grades 9-12

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Student Resources

Vetted resources students can use to learn the concepts and skills in this benchmark.

Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this benchmark.

Perspectives Video: Teaching Idea

Current Events:

This teacher has an idea about how to bring higher-level reading skills to science class.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Teaching Idea