B. Energy change is understood in terms of forces--pushes or pulls.
C. Some forces act through physical contact, while others act at a distance.
Clarification for grades K-5: The target understanding for students in the elementary grades should focus on Big Ideas A, B, and C.
Clarification for grades 6-8: The target understanding for students in grades 6-8 should begin to transition the focus to a more specific definition of forces and changes in motion. Net forces create a change in motion. A change in momentum occurs when a net force is applied to an object over a time interval.
Grades 9-12, Standard 12: Motion - A. Motion can be measured and described qualitatively and quantitatively. Net forces create a change in motion. B. Momentum is conserved under well-defined conditions. A change in momentum occurs when a net force is applied to an object over a time interval.
Related Courses
Related Access Points
Related Resources
Lesson Plans
Original Student Tutorial
Perspectives Video: Teaching Idea
Teaching Idea
Virtual Manipulatives
STEM Lessons - Model Eliciting Activity
During this activity, students will read a book about the Brooklyn Bridge. After whole class discussion, children will explore different types of bridges and data, in order to decipher which bridge is the strongest. The students will work collaboratively in groups with assigned student roles. Students will utilized Higher Order thinking to create a solution. The culminating activity is a presentation of solution to whole class.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. Click here to learn more about MEAs and how they can transform your classroom.
Original Student Tutorials Science - Grades K-8
Investigate and explain that when a force is applied to an object but it does not move, it is because another opposing force is being applied by something in the environment so the forces are balanced. This interactive tutorial also includes practice items to check your knowledge.
Student Resources
Original Student Tutorial
Investigate and explain that when a force is applied to an object but it does not move, it is because another opposing force is being applied by something in the environment so the forces are balanced. This interactive tutorial also includes practice items to check your knowledge.
Type: Original Student Tutorial
Virtual Manipulatives
Play with objects on a teeter totter to learn about balance.
- Predict how objects of various masses can be used to make a plank balance.
- Predict how changing the positions of the masses on the plank will affect the motion of the plank
- Write rules to predict which way plank will tilt when objects are placed on it.
- Use your rules to solve puzzles about balancing.
Type: Virtual Manipulative
Students can create an applied force and see how it makes objects move. They can also make changes in friction and see how it affects the motion of objects.
- Identify when forces are balanced vs. unbalanced.
- Determine the sum of forces (net force) on an object with more than one force on it.
- Predict the motion of an object with zero net force.
- Predict the direction of motion given a combination of forces.
Type: Virtual Manipulative
Parent Resources
Virtual Manipulatives
Play with objects on a teeter totter to learn about balance.
- Predict how objects of various masses can be used to make a plank balance.
- Predict how changing the positions of the masses on the plank will affect the motion of the plank
- Write rules to predict which way plank will tilt when objects are placed on it.
- Use your rules to solve puzzles about balancing.
Type: Virtual Manipulative
Students can create an applied force and see how it makes objects move. They can also make changes in friction and see how it affects the motion of objects.
- Identify when forces are balanced vs. unbalanced.
- Determine the sum of forces (net force) on an object with more than one force on it.
- Predict the motion of an object with zero net force.
- Predict the direction of motion given a combination of forces.
Type: Virtual Manipulative